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BCK—ALGEBRAS INDUCED BY 
EXTENDED POGROUPOIDS
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ABSTRACT. In this paper we study (positive) implicativeness of 
and investigate some properties of ideals in BCK*(X).

1・ Introduction
BCK-algebras and BCI-algebras were introduced by K. Iseki and 

Y. Imai in 1966 ([IT1, IT2, Is, MJ]), and then many authors have 
investigated various properties of these algebras. On the while, J. 
Neggers ([Ne]) introduced the notion of pogroupoid, and J. Neggers 
and H. S. Kim ([NK]) obtained a necessary and sufficient condition 
that a pogroupoid is to be a semigroup. Recently, C. K. Hur and 
H. S. Kim ([HK]) constructed a BC/C-algebra (X*;*,s) from the 
extended pogroupoid (X★广)，and obtain a necessary and sufficient 
condition for the algebraic system (X*;*,・,s) to have a property 
(rr • g) * z = (z * z) • (g * z) for all G X*・ In this paper we 
study (positive) implicativeness of BCK—X*), and investigate some 
properties of ideals in BCK*(X).

2. Preliminaries
A groupoid (X, •) is called a pogroupoid(\Ne\) if

(i) x-yE {x,y},
(ii) x • (y • x) = y • x,

(iii) (z ・ v)・(v ・ z) = (z ・ g)・ z
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for all x,y,z e X , J. Neggers ([Ne]) defined an associated partially 
ordered set x <y iSyx = y. On the one hand, for a given
poset (X, <) he also defined a binary operation on X by y • x = y if 
x < y • x = x otherwise, and proved that (X, •) is a pogroupoid. 
Let (X, •) be a pogroupoid and let w X. Define w a = a • w = w 
for all a C X* := X U {w}. Then (X、・)is a pogroupoid, called the 
extended pogroupoidof (X, •). Define a partial order < on X* by ir < ?/ 
iSy-x = y. Then (X、<) is a poset, called the associated poset with 
respect to (X、•)・

Proposition 2.1. ([HK]) Let (X,・)be a pogroupoid and let (X* : 
=XU{w}, •) be the extended pogroupoid ofX. Then w is the greatest 
element of the associated poset (X、<).

Let X be a set with a binary operation and a constant 0. Then 
(X; *, 0) is called a BCK-algebra if it satisfies the following conditions:

(I) ((z * g) * (rr * z)) * (z * g) = 0,
(II) (%*(%*;))*； = 0,

(III) x^x = Q,
(IV) z * g = 0 and y = 0 imply x = y,
(V) 0*g = O,

for all x,y,z e X. We construct a BCK-algebra (X*; *, w) from the 
extended pogroupoid (X、・) motivated from S. Tanaka ([T이).

Theorem 2.2. ([HK]) Let (X* ：= X U {w},-) be the extended 
pogroupoid of a pogroupoid (X, •). Define

w if x • y = x,
x otherwise.

Then (X, w) is a BCK-algebra.

We denote such a BC/C-algebra by BCK*(X*).

x *y :=
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3. (Positive) implicativeness in BCK*(X*)
The notion of positive implicative BCJ^algebra was introduced by 

K. Iseki and S. Tanaka ([IT이). A BCA^-algebra X is said to be positive 
implicative if it satisfies x * y = (x * y) * y for all g in X.

Theorem 3.1. If (X* := X U {w}, •) is an extended pogroupoid 
of a pogroupoid X)then the BCK-algebra BCK*(X*) is positive 
implicative.

Proof. For x、y C X yiy-x = thenx^y = x and (w*g)*g = x^y = 
x in If y-x = x does not hold, then x*y = □

A BCK-algebra X is said to be commutative if it satisfies ⑦ * (% * 
g) = g* (g*游 for all x,y e x.

Theorem 3.2. Let (X* := XU{幻},・)be an extended pogroupoid 
of a pogroupoid X. Then the BCK-algebra BCK*(X*) is commuta
tive if and only if x - y = x for any x,y e X.

Proof. Suppose that the BCK-algebra is commuta
tive. If there are x.yinX with x-y = x, then = w in BCK*(X» 
and hence x (x * y) = x w = x. Since BCK*(X*) is commutative, 
g*(g*w、) = g*g = u\a contradiction.

Conversely, assume that x • y = x for any xry e X. If x < y in 
BCKyW then y = w and so rr* = x*x = w and g*(g*z)=
y*w = w^w = w. Otherwise, x (x * g) = z*z = w = g*(g*z). 
Hence BCK*(X*) is commutative. □

A BCK-algebra X is said to be implicative if % = z * (y * 对 for 
all x.y e X. With this concept, K. Iseki and S. Tanaka proved the 
following theorem:

Theorem 3.3. ([IT2]) A BCK-algebra is implicative if and only 
if it is both commutative and positive implicative.
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Combining with Theorem 3.1 we obtain :

Corollary 3.4. Let (X* ：= Xu(w}, •) be anextended pogroupo- 
id of a pogroupoid X. If x *y = x for any x^y E X, then BCK*(X*) 
is implicative.

4. Z(x) and Z(") in BCK'X*、)

For a pogroupoid (X, •), we define Z{x) := {y E X\y - x = y} and 
it is called a terminal section of x E X. For any x and y in a BCK- 
algebra X, define Zg) := {v e X\x < v * y}. In this section we 
investigate the relation Z(rr) and Z(x^ y) in BCK*(X*)・

Theorem 4.1. If (X* := X U {w},-) is an extended pogroupoid 
of a pogroupoid X, then Z(x^ y) = Z(x)U Z(g) in BCK*(X、*).

Proof, Let u E Z(x) U Z(g). Then u E Z(a?) or u € Z(y). If 
u e Z(w), then u x = u. Hence u* x = w and u y = u ioT any 
认主 x) E X and so x < u = u * y. Therefore u E Z(z,g). Thus 
Z(游 C Z(的 g、)・ If u € Z(y), then u-y = u so u^y = w. Since w 
is 난le greatest element in X,x<w = u^y, i.e., x <u^y. Therefore 
u e Z(w用) and so Z(y) 으 Z(x,y), Thus Z(x) U Z(g) 으 Z(z,g).

Assume that Z(x) U Z(g) C Z(z,g). Then there is an element 
u E X such that x<u^y^u-x = x and u • y = y. This means that 
初=(& * ；) * % = « * z = % a contradiction. 口

Let (X* := XU{w}, •) be an extended pogroupoid of a pogroupoid 
X. A non-empty subset I of the X is called an ideal of BCK*(X*) if

(i) we/,
(ii) x^y e I and y e I imply x e I

for all x^y e X.

Theorem 4.2. Let (X* := XU (w}, •) be an extended pogroupoid 
of a pogroupoid X and 0 7^ / C X*. Then I is an ideal of BCK*(X*) 
if and only fbr any %, g inZ(z, g) 으 /.
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Proof. Assume that I is an ideal of BCK*(X*). Let x,y e L If 
u e Z{x, g), then x < u^y and so (« * g) * z m Since I is an 
ideal of BCK*(X*\ u*y e I and u e L Thus Z(z, y) C I.

Conversely, suppose Z(x.y) C I for all x,y E I. Note that w G 
Z{x, y) C I. Let a * 6 G / and b e L It is enough to show that a e L 
Since s = (q * b) * (q * b), q * b < q * b and so a e Z(a * 6, b) C I. 
Hence a G I. Thus I is an ideal of BCK*(X*). □

We can easily prove that the following lemma in BCKpC*):

Lemma 4.3. If y e Z(x) in BCK、X*\ then Z(饥 C Z(x).

Theorem 4.4. If (X* := X U {w},・)is an extended pogroupoid of 
a pogroupoid X and Xi € X{i = 1, 2, • • •), then U*=iZ(a%) is an ideal 
ofBCK*(X*\

Proof. Clearly, w & Ui=1Z(Xi). Let x,y e Ui=iZ(xJ. Then x e 
Z(xj) and y G Z(xk) for some j, k. By applying Theorem 4.1 and 
Lemma 4.3, we obtain

Z(Xj.Xk) = Z(xj) U Z(xk) 으 Ui==1Z(Xi).

If follows from Theorem 4.2 that Ui=1Z(Xi) is an ideal of BCK*{X*\ 
□
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