BCK-ALGEBRAS INDUCED BY EXTENDED POGROUPOIDS

SUN SHIN AHN AND HEE SIK KIM

ABSTRACT. In this paper we study (positive) implicativeness of $BCK^*(X^*)$, and investigate some properties of ideals in $BCK^*(X)$.

1. Introduction

BCK-algebras and *BCI*-algebras were introduced by K. Iseki and Y. Imai in 1966 ([IT1, IT2, Is, MJ]), and then many authors have investigated various properties of these algebras. On the while, J. Neggers ([Ne]) introduced the notion of pogroupoid, and J. Neggers and H. S. Kim ([NK]) obtained a necessary and sufficient condition that a pogroupoid is to be a semigroup. Recently, C. K. Hur and H. S. Kim ([HK]) constructed a *BCK*-algebra $(X^*; *, w)$ from the extended pogroupoid (X^*, \cdot) , and obtain a necessary and sufficient condition for the algebraic system $(X^*; *, \cdot, w)$ to have a property $(x \cdot y) * z = (x * z) \cdot (y * z)$ for all $x, y, z \in X^*$. In this paper we study (positive) implicativeness of $BCK^*(X^*)$, and investigate some properties of ideals in $BCK^*(X)$.

2. Preliminaries

A groupoid (X, \cdot) is called a *pogroupoid*([Ne]) if

- (i) $x \cdot y \in \{x, y\},$
- (ii) $x \cdot (y \cdot x) = y \cdot x$,
- (iii) $(x \cdot y) \cdot (y \cdot z) = (x \cdot y) \cdot z$

Received by the editors on June 19, 1998.

¹⁹⁹¹ Mathematics Subject Classifications: Primary 06F35, 06A06.

Key words and phrases: BCK-algebras, (extended) pogroupoid, (positive) implicative, commutative, ideal, terminal section.

for all $x, y, z \in X$. J. Neggers ([Ne]) defined an associated partially ordered set (X, \leq) by $x \leq y$ iff $y \cdot x = y$. On the one hand, for a given poset (X, \leq) he also defined a binary operation on X by $y \cdot x = y$ if $x \leq y, y \cdot x = x$ otherwise, and proved that (X, \cdot) is a pogroupoid. Let (X, \cdot) be a pogroupoid and let $w \notin X$. Define $w \cdot a = a \cdot w = w$ for all $a \in X^* := X \cup \{w\}$. Then (X^*, \cdot) is a pogroupoid, called the *extended pogroupoid* of (X, \cdot) . Define a partial order \leq on X^* by $x \leq y$ iff $y \cdot x = y$. Then (X^*, \leq) is a poset, called the *associated poset with respect to* (X^*, \cdot) .

PROPOSITION 2.1. ([HK]) Let (X, \cdot) be a pogroupoid and let $(X^* : = X \cup \{w\}, \cdot)$ be the extended pogroupoid of X. Then w is the greatest element of the associated poset (X^*, \leq) .

Let X be a set with a binary operation "*" and a constant 0. Then (X; *, 0) is called a *BCK-algebra* if it satisfies the following conditions:

- (I) ((x * y) * (x * z)) * (z * y) = 0,
- (II) (x * (x * y)) * y = 0,
- (III) x * x = 0,
- (IV) x * y = 0 and y * x = 0 imply x = y,
- (V) 0 * x = 0,

for all $x, y, z \in X$. We construct a *BCK*-algebra $(X^*; *, w)$ from the extended pogroupoid (X^*, \cdot) motivated from S. Tanaka ([Ta]).

THEOREM 2.2. ([HK]) Let $(X^* := X \cup \{w\}, \cdot)$ be the extended pogroupoid of a pogroupoid (X, \cdot) . Define

$$x * y := \left\{egin{array}{cc} w & ext{if } x \cdot y = x, \ x & ext{otherwise.} \end{array}
ight.$$

Then $(X^*; *, w)$ is a BCK-algebra.

We denote such a BCK-algebra by $BCK^{\star}(X^{\star})$.

3. (Positive) implicativeness in $BCK^{\star}(X^{\star})$

The notion of positive implicative *BCK*-algebra was introduced by K. Iséki and S. Tanaka ([IT2]). A *BCK*-algebra X is said to be *positive implicative* if it satisfies x * y = (x * y) * y for all x, y in X.

THEOREM 3.1. If $(X^* := X \cup \{w\}, \cdot)$ is an extended pogroupoid of a pogroupoid X, then the BCK-algebra $BCK^*(X^*)$ is positive implicative.

Proof. For $x, y \in X$ if $y \cdot x = x$, then x * y = x and (x * y) * y = x * y = x in $BCK^*(X^*)$. If $y \cdot x = x$ does not hold, then x * y = (x * y) * y. \Box

A BCK-algebra X is said to be commutative if it satisfies x * (x * y) = y * (y * x) for all $x, y \in X$.

THEOREM 3.2. Let $(X^* := X \cup \{w\}, \cdot)$ be an extended pogroupoid of a pogroupoid X. Then the BCK-algebra $BCK^*(X^*)$ is commutative if and only if $x \cdot y = x$ for any $x, y \in X$.

Proof. Suppose that the BCK-algebra $BCK^*(X^*)$ is commutative. If there are x, y in X with $x \cdot y = x$, then x * y = w in $BCK^*(X^*)$ and hence x * (x * y) = x * w = x. Since $BCK^*(X^*)$ is commutative, y * (y * x) = y * y = w, a contradiction.

Conversely, assume that $x \cdot y = x$ for any $x, y \in X$. If x < y in $BCK^*(X^*)$, then y = w and so x * (x * y) = x * x = w and y * (y * x) = y * w = w * w = w. Otherwise, x * (x * y) = x * x = w = y * (y * x). Hence $BCK^*(X^*)$ is commutative.

A BCK-algebra X is said to be *implicative* if x = x * (y * x) for all $x, y \in X$. With this concept, K. Iséki and S. Tanaka proved the following theorem:

THEOREM 3.3. ([IT2]) A BCK-algebra is implicative if and only if it is both commutative and positive implicative.

Combining with Theorem 3.1 we obtain :

COROLLARY 3.4. Let $(X^* := X \cup \{w\}, \cdot)$ be an extended pogroupoid of a pogroupoid X. If $x \cdot y = x$ for any $x, y \in X$, then $BCK^*(X^*)$ is implicative.

4. Z(x) and Z(x,y) in $BCK^{\star}(X^{\star})$

For a pogroupoid (X, \cdot) , we define $Z(x) := \{y \in X | y \cdot x = y\}$ and it is called a *terminal section* of $x \in X$. For any x and y in a *BCK*algebra X, define $Z(x, y) := \{v \in X | x \leq v * y\}$. In this section we investigate the relation Z(x) and Z(x, y) in $BCK^*(X^*)$.

THEOREM 4.1. If $(X^* := X \cup \{w\}, \cdot)$ is an extended pogroupoid of a pogroupoid X, then $Z(x, y) = Z(x) \cup Z(y)$ in $BCK^*(X^*)$.

Proof. Let $u \in Z(x) \cup Z(y)$. Then $u \in Z(x)$ or $u \in Z(y)$. If $u \in Z(x)$, then $u \cdot x = u$. Hence u * x = w and u * y = u for any $y \neq x \in X$ and so $x \leq u = u * y$. Therefore $u \in Z(x, y)$. Thus $Z(x) \subseteq Z(x, y)$. If $u \in Z(y)$, then $u \cdot y = u$ and so u * y = w. Since w is the greatest element in $X, x \leq w = u * y$, i.e., $x \leq u * y$. Therefore $u \in Z(x, y)$ and so $Z(y) \subseteq Z(x, y)$. Thus $Z(x) \cup Z(y) \subseteq Z(x, y)$.

Assume that $Z(x) \cup Z(y) \subseteq Z(x, y)$. Then there is an element $u \in X$ such that $x \leq u * y$, $u \cdot x = x$ and $u \cdot y = y$. This means that w = (u * y) * x = u * x = u, a contradiction.

Let $(X^* := X \cup \{w\}, \cdot)$ be an extended pogroupoid of a pogroupoid X. A non-empty subset I of the X is called an *ideal* of $BCK^*(X^*)$ if

- (i) $w \in I$,
- (ii) $x * y \in I$ and $y \in I$ imply $x \in I$

for all $x, y \in X$.

THEOREM 4.2. Let $(X^* := X \cup \{w\}, \cdot)$ be an extended pogroupoid of a pogroupoid X and $\emptyset \neq I \subseteq X^*$. Then I is an ideal of $BCK^*(X^*)$ if and only if, for any x, y in $I, Z(x, y) \subseteq I$. *Proof.* Assume that I is an ideal of $BCK^*(X^*)$. Let $x, y \in I$. If $u \in Z(x, y)$, then $x \leq u * y$ and so $(u * y) * x = w \in I$. Since I is an ideal of $BCK^*(X^*)$, $u * y \in I$ and $u \in I$. Thus $Z(x, y) \subseteq I$.

Conversely, suppose $Z(x, y) \subseteq I$ for all $x, y \in I$. Note that $w \in Z(x, y) \subseteq I$. Let $a * b \in I$ and $b \in I$. It is enough to show that $a \in I$. Since w = (a * b) * (a * b), $a * b \leq a * b$ and so $a \in Z(a * b, b) \subseteq I$. Hence $a \in I$. Thus I is an ideal of $BCK^*(X^*)$.

We can easily prove that the following lemma in $BCK^*(X^*)$.

LEMMA 4.3. If $y \in Z(x)$ in $BCK^{\star}(X^{\star})$, then $Z(y) \subseteq Z(x)$.

THEOREM 4.4. If $(X^* := X \cup \{w\}, \cdot)$ is an extended pogroupoid of a pogroupoid X and $x_i \in X(i = 1, 2, \cdots)$, then $\bigcup_{i=1} Z(x_i)$ is an ideal of $BCK^*(X^*)$.

Proof. Clearly, $w \in \bigcup_{i=1} Z(x_i)$. Let $x, y \in \bigcup_{i=1} Z(x_i)$. Then $x \in Z(x_j)$ and $y \in Z(x_k)$ for some j, k. By applying Theorem 4.1 and Lemma 4.3, we obtain

$$Z(x_j, x_k) = Z(x_j) \cup Z(x_k) \subseteq \bigcup_{i=1} Z(x_i).$$

If follows from Theorem 4.2 that $\bigcup_{i=1} Z(x_i)$ is an ideal of $BCK^*(X^*)$. \Box

References

- [HK] C. K. Hur and H. S. Kim, BCK-algebras of extended pogroupoid, Bull. Korean Math. Soc. 35 (1998), 203-208.
- [Is] K. Iséki, On BCI-algebras, Math. Seminar Notes. 8 (1980), 125-130.
- [IT1] K. Iséki and S. Tanaka, Ideal theory of BCK-algebras, Math. Japon. 23 (1976), 352-366.
- [IT2] K. Iséki and S. Tanaka, An introduction to theory of BCK-algebras, Math. Japon. 23 (1978), 1-26.
- [MJ] J. Meng and Y. B. Jun, BCK-algebras, Kyung Moon Sa Co., Seoul (1994).
- [Ne] J. Neggers, Partially ordered sets and groupoids, Kyungpook Math. J. 16 (1976), 7-20.

- [NK] J. Neggers and H. S. Kim, Modular semigroups and posets, Semigroup Forum 53 (1996), 57-62.
- [Ta] S. Tanaka, Examples of BCK-algebras, Math. Seminar Notes 3 (1975), 75-82.

SUN SHIN AHN DEPARTMENT OF MATHEMATICS EDUCATION DONGGUK UNIVERSITY SEOUL 100-715, KOREA

E-mail: sunshine@cakra.dongguk.ac.kr

HEE SIK KIM DEPARTMENT OF MATHEMATICS HANYANG UNIVERSITY SEOUL 133-791, KOREA

E-mail: heekim@email.hanyang.ac.kr

58