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ON 유FRAMES AND STRONG 5-FRAMES

Eun Ai Choi

Abstract. We introduce J-frames, strong 5-frames and completely 

distributive lattices, and investigate some relationships among those 

frames.

1. Introduction
It is well known [6,7,11] that for any topological space X, its topol

ogy Q(X) is a frame. In Q(X), there are no points of X but open 
subsets of X, so we call the frame Q(X) a pointfree topology or a 
pointless topology.

The study of topological properties from a lattice-theoretic view
point was initiated by H. Wallman [17] and further developed by J. 
C. C. Mckinsey and A. Tarski [14], G. Nobeling [15], and L. Lesieur 
[13]. In particular, C. Ehresmann [5] and J. Benabou [2] took the de
cisive step of regarding local lattices as generalized topological spaces 
in their own right. Such a local lattice is called a frame, a term intro
duced by C. H. Dowker and studied by D. Papert [3,4], J. R. Isbell 
[10], B. Banaschewski [1], P. T. Johnstone [11], G. Gierz et al. [6], 
Jorge Picado [12], A. Schauerte [16], and J. Wick Pelletier [18].

In a complete lattice, there are various conditions of distributivity. 
The strongest one is the completely distributive law which arises very 
rarely. Indeed, complete Boolean algebra is completely distributive 
iff L is isomorphic with the power set lattice of some set X. We also
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note that continuous lattices and frames are characterized by certain 
distributive laws. We note that a frame L is a complete lattice but in 
the theory of frames, we use only finite meets. Considering countable 
meets, we will get more properties of frames.

We introduce the concepts of 5-frames, strong 5-frames and com
pletely distributive lattices, and study some relationships among those 
concepts.

Definition 1.1. Let L be a poset. We say that L is :

(1) a lattice if every finite subset of L has the least upper bound 
and the greatest lower bound.

(2) complete if every subset A of L has the least upper bound 
and the greatest lower bound.

Definition 1.2 ([8,9]). Let L be a lattice.

(1) L is said to be distributive if for any x, y, 之 € L,

x A (y V 之) = (x A 이) V (x A 方),

or equivalently,

:r V (y A 2：) = (⑦ V 이) A (:r V z).

(2) For any ⑦, y e L, y is said to be a complement of x if x\/y = e 
and ⑦ A y = 0.

If L is a distributive lattice, then every element x oi L has at 
most one complement. If x has the unique complement, then the 
complement of x is denoted by xf.

Definition 1.3. A distributive lattice L is called a Boolean algebra 
if every element x m L has the complement a:'.
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Definition 1.4. A complete lattice L is called a frame (or com
plete Hey ting algebra) if for any a G L and S 으」L,

a A (\/ S) = \j{ a /\ s : s E S }.

Example 1.5.

(1) Let X be a set and Q(X) a topology on X. Then (Q(X), C) 
is a frame, where C is the inclusion relation.

(2) Every complete chain is a frame.
(3) Every complete Boolean algebra is a frame.

2. 5-Frames and Strong 5-Frames
Definition 2.1. A frame L is called a 8-frarrie if for any a e L 

and countable subset K of

a\/ (/\K) = k : k E K}.

Remark 2.2.
(1) In a complete lattice L, a V (J\K} < /\{a \/ k : k E K} 

holds for any K C L and a € L, because a < a V fc for all A: E K 
imply a < /\{a y k : k E K} and A: < a V A; for all A: G JC imply 
/\K < /\{a V k : k e K} ; hence a V (/\K) < /\{a V fc : e K}.

(2) Every complete chain L is a 5-frame. Because for any a e L 
and」FC 으」L, we have :

i) If a < k for all k e K, then a < /\K; hence

a\j(J\K) = /\K = l\{a\J k : k e K}.

ii) If there is E K with ko < a, then /\K < kQ < a \ hence

a V (J\K) = a = a\/ k()> /\{a V k : k E K}.
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Thus by i), ii) and (1), L is a 5-frame.
(3) Every complete Boolean algebra L is a 5-frame. Thus the 

frame of regular open subsets of R is a 5-frame. To show this, let L 
be a complete Boolean algebra. Then for a G L and for any T C L 
and x ETy

⑦ = 0 V ⑦

= (a A a') V x

= (a V x) A (a' V x) ;

hence

/\T = /\{(a V ⑦) A (a' V ⑦) : ⑦ e T}

= (A{으 V ⑦ : ⑦ G 71}) A (/\{af V x : x 6 T}).

Thus

a V (/\T) = (a V(J\{a \/ x : x e T})) A (a V (/\{a' V x : x e T}))

= (a V (J\{a V ⑦ : ⑦ e T})) A e

= /\{a y x : x e T},

Therefore, L is a d-frame by (1).

Proposition 2.3. Every 6-frame is a frame.

Example 2.4. A frame need not be a 5-frame. In fact, the open 
set lattice C/(N) is not a 5-frame but a frame, where Cy(N) is the 
cofinite topology on the set N of natural numbers. To show this, let

K = {N — {m} : m is a positive odd integer}, a = N — {2}.

Then a = a V (/\K) 羊 /\{a k : k e K} = e, where f\K = 
andV八 = U<
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Definition 2.5. A frame L is called a strong 8-frame if for any 
countable family (Ak)keN of subsets of L,

/\(WU)= V (A/H), 
f e n Ak k良

where / = (jf(n))neN.

Example 2.6. Let X be an infinite set endowed with the cocount- 
able topology Cc(X). Then L = Cc(X) is a strong 5-frame. We note 
that Cc(X) is closed under countable intersections. Indeed, take any 
countable family (Ak)ke^ °f subsets of L,

A(VA)= miMU)

u ( n *))
fe n 4 "해

V (A *))•
fe n 4

Proposition 2.7. Let L be a strong 6-frame. If for each n G N, 
An is cover of L, then { /\ f(n) : / 6 Ak} is the meet of (』4n)nGn 

in {Cov{L\ <).

Proof. Let B = { /\ f(n) : / E fl 세, then B is a cover of L, 
nGN fcGN

because
VB = V{ A /(n)：/e n MneN fcGN

= A(V 쇼) ke^
= e.

Clearly B < An for any n G N. Suppose there is C with C < An for 
any n 6 N. For any c G C, there is a / e II 刀玄 with /(n) e An and 

ke^
c < f(n) (n E N) ; hence c < /\ /(n) G B. Thus one has C < B. □ 

neN ‘
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Proposition 2.8. Every strong 6-frame L is a 6-frame.

Proof. For any countable K C L and c< L, put Ak = {a, k} (k E 
K), then the equation in Definition 2.5 is precisely one in Definition 
2.1. □

Example 2.9. Let L = {G : G is a, regular open subset of R}. 
Then L is a 5-frame but not a strong 5너Frame. Because, let Ak = {(p— 
1 /k, p + 1/k) : p e Q} (k e N), then since Q 으 V 八日 V 細 = 뚀 (k € 
N) ; hence /\ (\/사 = 政 Take any / 6 II4, then /\ f(n) ==• 0.

fceN ke良 neN
Thus V ( A f(n)) = 0- Hence /\ (\C4스) 구 V ( A f(nYh 

fe n 시k "三良 /efl Ak n€N

Definition 2.10. Let L be a complete lattice. L is said to be 
completely distributive if for any family of subsets of L,

A(\M0= V (A Zb)). 
iei fe n Ai jei

Proposition 2.11. A complete chain is completely distributive.

Proof. Since V A is an upper bound for { /\ f(j) : € II 
jei iei

V 八 之 A fU) for all / e fl 八 ; hence
j三i iei

V Ai > V ( A f(J)) ； and hence
/e fl Ai jeiiEl

A(\Md 之 V (A/(>
iei fe fl 八 :經iiei

Put X = [\凶 A) and y = V ( A /(』『))• If ⑦ > ?/, then we have 
iei feTIAi jei

iei
the following cases.
Case 1. If there is no element of L strictly between x and y, then 
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since x <\/ Ai (i E I), there is aj E Aj with x < aj (j G I) ; hence 
there is a choice function / G fl 八 with f(j) > x (j e I). Thus

iei

< A f<J) < V (A /(』‘)) = 切 
jei fe n a, jei

which contradicts to the fact that x > y.
Case 2. If there is z e L with x > z > y, then since 之 < /\ (\/ AJ, 

iei
\/ Ai > z for all z e I and there is aj e Aj with aj > 之:. Then there 
is a choice function / G fl 八 with f (j) > z (j e I). Thus

iei

z< A f(j) < V (A /b’)) = y, 
jei fe n 八 W

iei

which contradicts to the fact that y < z. Therefore x = y. □

Proposition 2.12. If a complete lattice L is completely distribu
tive f then L is a strong S-frame.

The converse of Proposition 2.12 is not true.

Example 2.13. Let L = Cc(R) and Aa = {R — {a}, R — {-a}} 
(a e R+). Then

/\ (VAJ = 포尹0 = V ( A /(/%)• 
fe n

a€R+

Thus L = Cc(R) is not completely distributive.
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