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THE RELATIVE LUSTERNIK-SCHNIRELMANN
CATEGORY OF A SUBSET IN A SPACE WITH
RESPECT TO A MAP

Eun JU MooN, CHANG KYU HUR AND YEON S0O YOON

ABSTRACT. In this paper we shall define a relative Lusternik-Schnirel-
mann category of a subset in a space with respect to a map which
generalizes the category of a space, the category of a map and the
relative category of a subset in a space. We shall study some proper-
ties of the relative Lusternik-Schnirelmann category of a subset in a
space with respect to a map and generalize many results of the above
categories.

1. Introduction

The notion of category of a space was proposed by Lusternik and
Schnirelmann(7] in 1934, and proved that, when X is a smooth man-
ifold, cat X gives a lower bound for the number of critical points of
a smooth function on X. The definition adopted here is due to R. H.
Fox[3]. He altered the origin definition by replacing closed by open cov-
erings as follows; The category, cat X, of a topological space X is the
least integer n such that X can be covered by the n open subsets each of
which is contractible in X; if there is no such integer, cat X = oco. The
notion of category of a space can be generalized in a number of ways.
One of these is the notion of the category of a map, due to Berstein
and Ganea[l]. For a map f : X — Y, the category, cat f, of a map f
is the least integer n > 1 with the property that X may be covered by
n open subsets on each of which f is homotopic to a constant map; if
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no such integer exists, we put cat f = oo. Of course cat f reduces to
cat X when X =Y and f is the identity. For a subset A of X and an
inclusion ¢ : A — X, cat 1 is generally written as cat XA‘and called the
relative category, catx A, of a subset A in X. In this paper we shall
define a Lusternik-Schnirelmann category of a subset with respect to a
map which generalizes the above several Lusternik-Schnirelmann cate-
gories. We shall study some properties of the Lusternik-Schnirelmann
category of a subset with respect to a map and generalize many results
of the above categories. ;

2. The relative Lusternik-Schnirelmann Category of a subset
in a space with respect to a map

DEFINITION 2.1. Let A be a subset of X and f : X — Y a map.
Then the relative Lusternik-Schnirelmann category, caty fa, of A in X
with respect to f is the least integer n with the property that A can
be covered by the n open subsets in A each of which f is homotopic
to a constant map. If no such covering exists we say that the relative
category of A in X with respect to f is infinite.

REMARK 2.2. (1) If f=1x ,then catx (1x)a = catx A.
(2) In fact, caty fa = cat (fi), where i : A — X is the inclusion.
B)If f~g:X —Y ,then caty fa =caty ga .
(4) caty fa=1lifandonlyif f|, ~%x: A=Y .
(5) If A= X, then caty fa = cat f.

The following Theorem 2.3 says that caty fa is subadditive.

THEOREM 2.3. If f: X - Y and A C X and A = A; U A, and
Ay, A, be open subsets of A, then caty fa < caty fa, + caty fa,.

Proof. Let caty fa, = m and caty f4, = n. Then there exist cov-
erings {U5|U,- ropen in Ay, f, ~ x: U = Y1 = 1,---,m} of
A, and {V;|V; : open in A, f,vj ~*:V; = Yi=1,-,n} of
A,. Now we show that {U;, V;|U;, V; are open in Ay, A, respectively,
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f|Ui~*:Ui——>Y, f|vj ~x: V=Y i=1,---,m, j=1,---,n}
is an open covering of A. Since U; is open in A; and A; is open in
A, U; is open in A. Similarly, V; is open in A. Since 4; = |, U;,
Ay =J;V; and A = A, UA,, {U;, V;} is an open covering of A. Hence
caty fa < caty fa, +caty fa,. O

COROLLARY 24. [1] If X = AUB and A, B are open in X, then
catf<catf|A+catf|B

THEOREM 2.5. If A C B C X, then caty fa < caty fz.

Proof. Let {V,} be a covering of B such that each V,, is open in B
and on each V, f is null homotopic. Since B C |J, V,, and A is subset
of B, Ac ,(VonA). Thus {V, N A} is a covering of A such that

each V,N A is open in A and on each V, N A f is null homotopic. This
proves the theorem. O

Taking B = X in Theorem 2.5, we have the following corollary.
COROLLARY 2.6. caty fa < cat f for any subset A of X.

THEOREM 2.7. For any twomaps f : X - Y, ¢g:Y — Z and a
subset A of X, catz (go f)a < min {caty fa, catz gsa)}-

Proof. (1) We show that catz (go f)a < caty fa. Let {U,} be a
covering of A such that for each «, U, is open in A and foi, ~ % : Uy —
Y. Then gofoi, ~ gox = cy) : Uy = Z. Thus catz (gof)a < caty fa.
(2) We show that catz (go f)a < catz gga). Let {V,} be a covering of
f(A) such that for each a, V,, is open in f(A) and goi, ~ x:V, — Z.
Then for each a, there exists an open U, in Y such that V,, = f(A)NU,.
Since f is continuous, f~1(U,) is open in X and f~1(U,) N A is open
in A. Moreover A C fo f(A) = f71 (U, V) = U, (fH{Us) N A).
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Consider the following commutative diagram

FUUHNA —= X

fl lf
v,

Then go foi, =goiyof~x*of=x":f1(V,) = Z. Thus catz (go
f)a < catz gsa). From (1) and (2), we know that catz (go f)4 < min
{Caty fa, catz gf(A)}. O

From Theorem 2.7 and Coroliary 2.6, we have the following corollary.

- COROLLARY 2.8. [4] For any twomaps f : X =Y andg:Y — Z
we have cat (g o f) < min {cat f, cat g}. In particular cat f < cat X
and cat f <catY.

COROLLARY 2.9. For any map f : X — Y and any subset A of X,
caty fa < min {caty f(A), catx A}.

Proof. In Theorem 2.7, take g = ¢ (4 : f(A) = Y. Since cat if4) =
caty f(A) and caty fa < cat ig = catx A, we know, from Theorem’
2.7, that caty f4 < min {caty f(A), catx A}. O

COROLLARY 2.10. Let h : X' — X has a left homotopy inverse
k: X — X'. Then for a subset A’ of X', catx ha = catx A'.

Proof. Since catx ha = cat hi' and catx: A' = cat ', we know, from
Corollary 2.8, that catx hy < catxs A’. Thus we show that caty: A’ <
catx hy. Let {V,} be a covering of A’ such that for each a, V,, is open
in A" and hiq ~ % : Vo = X. Thus iq ~ khis ~ cx) @ Vo = X
Therefore catx: A’ < catx ha. This proves the corollary. O

THEOREM 2.11. For amap f : X —- Y, let h : X' - X be a

‘homotopy equivalence with homotopy inverse k : X — X'. Let A’ be a
subset of X' such that koh(A') C A'. Then caty (foh)a = caty fa).
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Proof. From Theorem 2.7, we have that caty (foh)a < caty fuca)-
Thus we show that caty fra) < caty (foh)a. Let {V,} be a covering
of A’ such that for each a, V, is open in A" and fohoi ~ x :
Vo — Y. Then for each a, there exists an open set.Ua in X' such
that V, = A' N U,. Since k is continuous, k~Y(U,) is open in X and
h(A") N k~1(U,) is open in h(A'). Since {V,} is a covéring of A’ and
koh(A) C A, h(A") C k™Y (A") C kU, Va) C Uy[k~*(Us)]. Thus
h(A") c U, (M(A)NEk~1(U,)). Since fohoil, ~ % : V, — Y, there exists
a continuous function K : V, x I — Y such that K(,0) = fohoi,
and K(,1) = c,. Define H : h(A)Nk™Y(U,) x I = Y by H(z,t) =
K(k(z),t). Then since K and k are continuous maps, H is continuous
map. From the following commutative diagram

il
Va . ¢

| J»

h(A) Nk~ (Uy) —os X,

H(z,0) = K(k(z),0) = fohoi  ok(z) = foi,ohok(x). Since 1x ~
hk : X — X, there exists a continuous function R : X x I — X such
that R(,0) =1x, R(,1) = hok. Define G: h(A)Nk 1 (Uy) X I - Y
by ’

Glat) = {foR(x, 2t) if

Fort=1%, foR(z,1) = fohog(z) = foisohog(z) = H(z,0). Thus
G is well-defined and continuous. Since G(z,0) = fo R(fc, 0)=f(z) =
fois(z), G(z,1) = H(z,1) = K(k(z),1) = ¢4, fOiq S h(A") N
k~*(U,) — Y. Hence {h(A") N k~1(U,)} is an open covering of h(A’)
and foiq ~ % : h(A")Nk™'(U,) — Y. Therefore cat fra) < cat fohar.
This proves the theorem. O
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In Theorem 2.11, taking f = 1x : X — X and applying Corollary
2.10 and Remark 2.2(1), we have the following corollary.

COROLLARY 2.12. [4] Let h : X' — X be a homotopy equivalence
and A' a subset of X'. Then catx: A’ = catx h(A'). In particular,
cat X' = cat X.

From now on we turn our attention to path connected spaces with
base point *. If there is an open neighborhood of * which is contractible
in a space, then we describe the space as categorically well based. In
the n-fold topological product II"X of a pointed space X with itself,
let T"X be the subspace of II" X consisting of the n-tuples (z1,-- -, Zn)
such that a least one of the x; equals *. Then we have the following
theorem which is a generalized result of James[4]. ‘

THEOREM 2.13. Suppose that A is a normal subspace of X and Y
is a path-connected and categorically well based space, and f : X —Y
is a continuous map. Then caty fsa < n if and only if there exist a
continuous function g : A — T™Y such that the following diagram is
homotopy commutative ;

A 25 TY

fiAl jl

Y —25 M.

Proof. Since A o f oiy and j o g are homotopic , there exists a
continuous function h; : A — II"Y such that hg = Ao foius, hy = jog.
Since Y is categorically well-based, there exist an open neighborhood
N of x which N is contractible in Y, that'is, ¢ ~ x : N — Y. For
all k = 1,--+ ,n, let Uy = h' o py'(N), where p : [I"Y — Y is the .
projection. Then Uy is open in A. Since ¢ ~ x: N — Y | there exists
a continuous map K; : N — Y such that Ky = ¢ and K; = ¢,. Let

v¢ = Kiopg o hy @ Uy pﬂf N X4 Y. Then ¢ : Uy — Y is continuous
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and
Yo=Kooprohy =topgohy =pgoh,
11 =Ki0prohs =c.opgoh; =c..
Define R; : Uy, — Y by

R — prohy if 0<t<Z,
N B if 3<t<1

By the pasting lemma, R; is continuous and

Ry(z) = pro ho(z) =pro (Ao fois)(z) = f(z) = foix(z),

Ri(z) = m(z) = c(z) = %,
where i, : U, — X is the inclusion. Thus f o i ~x*x U, = Y.
Moreover, since |J Uy, = Jlhi! o i (N)] = AT {Upr H(N)] = RTY(N x
Xxo o xX)UXxNx---xX)J---UX xX x---xN)] = h{}I"X] =
A, {Uy} is a covering of A. Hence caty fa < n. Conversely, suppose
{Vk|Vj is open in A,1 < k < n} is a covering of A each of which f is
homotopic to a constant map. For each k = 1,---,n , there exists a
continuous function g : Vi x I — Y such that

ge(,0) = foir, gi(,1) = cq,
where 7 : V;, — X is the inclusion. Since Y is path-connected, for
each kK = 1,--- ,n ,there exists a path py : I — Y such that p(0) =
xx, Pr(1) = . Let hy : Vi x I = Y be given by

;,2t)  if 0<t<l
e, ) = 9020 0=tss
pe(2t—1) if 5<t<1.

Then hy, is continuous and h( ,0) = gx(,0) = foix, he(,1) =pr(1) =
cs. Since A is normal, there exists a covering {Ay,---, An | Ay is closed

in A, for all k} of A with the property that for each k =1,--- ,n, there

exists an open set Wj, in A such that Ay, C Wi, C Wi, C Vi. Since Ag
and A — W, are disjoint sets, by the Urysohn’s lemma, there exists a
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map ; : A — I such that y;(Ax) = 1, v (A — W) = 0. Define a map
dp: A x I =Y by

_J f(a) if a€A—W,
dk(a, t) B {hk(a, t’yk(a)) if a€ Vk.

Then dj is well defined and continuous. Let d : A x I —=» (A x

) x--x (AxI) "Z3™ ¥y x ... x Y. Then d is continuous and
d(a,0) = (di(a,0),--- ,dn(a,0)) = (f(a),---, f(a)) = Aofois(a). Let
a € A =|JAi. Then there exists a subset A, such that a € A, and
Yro(@) = 1. Since a € Ay, C Vi,

dko(a’ 1) = hi, (a”)’ko (a)) = hko(a> 1) = C*(a) = *.
Thus d(a,1) = (di(a,1),--- ,dn(a,1)) € T*Y. Let g = d(,1) : A —
T"Y. Then Ao foiy 2 J © g. This proves the theorem. O

COROLLARY 2.14. [4] Suppose that X is normal, and Y is a path-
connected and categorically well based space, and f : X — Y is a
continuous map. Then cat f < n if and only if there exist a continuous
function g : X — T™Y such that the following diagram is homotopy
commutative ;

X % Ty

Ll

Y -2 M.

THEOREM 2.15. Let F — E -5 B be a fibration and B' C B a
path connected categorically well based such that E' = p~!(B’) is a

normal categorically well based path connected space. Then catg E' <
catg 1-catp pg. In particular, catg E' < catg F - catB'.

Proof. Let catp pgr = n. Then by Theorem 2.13, there exists a
map ¢ : E' — T"B’' such that the following diagram is homotopy
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commutative ;

El ¢ y TnBl

Pill ljsl
B =2, mp
9.

where ¢/ : E' — FE is the inclusion. Thus there exists a continuous
function H : E' x I — II"B’ such that

H(,0)=A%o(pod)="(poi)A%L,
H(,0)=jp oo |

Consider the following commutative diagram

an,
E' — E'x---x E'
| [
an,
B' —%+ B'x---x B
Since po4' : E' — B'is a fibration, [I"(po4') : II"E' — [I"B' is a

fibration. For the commutative diagram

An, ‘
E' x {0} —— II"E’

linj ln" (")

ExI -2, 1mp,
there exists a continuous function G : E' x I — IT"E’ such that
G(,0) =A%, I"(poi')oG = H.

Let ¢ =G(,1): E' x {1} > I"E". Then [I"(po )o@ ="(poi')o
G(,1)=H(,1)=jpo¢: E' - "B Therefore

1) M*(poi)od =jpod
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Let catg i = m. By Theorem 2.13, there exists a function § : F —
T™E' such that the following diagram is homotopy commutative;

F 2 ey

zl le'
AT
E' —Z5 TI™F'.
Thus there exists a continuous function K : F' x I — II"™E’ such that

K(,0) = A% 04, K(,1) = jp o 6. Since (B',*) is a closed cofibred
pair, by the Strgm’s theorem [11], (E', F') is a cofibred pair. That is,

F -%5 E'is cofibration. Thus for a space [I™E’, a map g = A}, o¢ and
a continuous function K : F' x I — II™E’ such that K( ,0) = g, there

is a continuous function K : E’ x I — II™E' such that
K(,00=A%, Ko(ix1)=K.

Let 7 = K(,1): B' 5 II™E'. Then 70 = K |pxq1y = K(,1) = jp 00.
That is,

(2) Toi=jgol

Since the following diagram is commutative

1 A%’ ' li
B — EF'x...xFE

11 | lnn(A’g,)

AT
E —Z25 (B'x--+xE)x--x(E'x---xE'),

7 7 H‘n Am’ OG
(1) o ¢ "% TI"(AR) 0 ¢ ) TI"(A%) 0 A%, = A", That is,

M"(r) o ¢' ~ AF".
Let z € E'. We know, .by (1), that

I"(poi) o ¢'(z) = jp o ¢(z) = ¢(z) € T"B".
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Thus there is an element z; € F such that ¢'(z) = (1,22, -+ , 25, -+, Zy),
where F' is subset of E'. From (2), we know that 7 04 = jg 0. Thus

'(r) o ¢'(x) = I(r)(z1, 82, 12, Tn)
= (@), (@), 1 7(2g), T (2n))
= (1(z1),7(x2), -+ ,0(zy), -+, 7(zn))
- (T(xl,T(@),...,(...,*,...),...’T(xn));

where § : F — T™E' and (--- ,*,---) € T™E'. Therefore at least one
coordinates of II"(7) o ¢/(z) is the base point of E’. That is, there is a

map I1"(1) o ¢' : E' — T™E’ such that
JIM(r) o ¢ ~ ARF.

.’172)

Hence by Theorem 2.13, catg E' < mn = catp i - catp pp .
In particular, we have, from Corollary 2.9, that

C(ltE/ iF S CCLtEI Z(F) = catE: F
catB: PE' S catB/ p(EI) = catB: B’ = cat B,.
Thus catg E' < catg F - cat B'. ' 0O

In Theorem 2.15, taking B’ = B, we have the following corollary.

COROLLARY 2.16. [4] Let F — E %5 B be a fibration, and B a
path connected categorically well based space and E a normal categor-
ically well based path connected space. Then cat E < cat i - cat p. In
particular, cat E < cat F' - cat B.
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