THE RELATIVE LUSTERNIK-SCHNIRELMANN CATEGORY OF A SUBSET IN A SPACE WITH RESPECT TO A MAP

EUN JU MOON, CHANG KYU HUR AND YEON SOO YOON

ABSTRACT. In this paper we shall define a relative Lusternik-Schnirelmann category of a subset in a space with respect to a map which generalizes the category of a space, the category of a map and the relative category of a subset in a space. We shall study some properties of the relative Lusternik-Schnirelmann category of a subset in a space with respect to a map and generalize many results of the above categories.

1. Introduction

The notion of category of a space was proposed by Lusternik and Schnirelmann[7] in 1934, and proved that, when X is a smooth manifold, cat X gives a lower bound for the number of critical points of a smooth function on X. The definition adopted here is due to R. H. Fox[3]. He altered the origin definition by replacing closed by open coverings as follows; The category, cat X, of a topological space X is the least integer n such that X can be covered by the n open subsets each of which is contractible in X; if there is no such integer, cat $X = \infty$. The notion of category of a space can be generalized in a number of ways. One of these is the notion of the category of a map, due to Berstein and Ganea[1]. For a map $f : X \to Y$, the category, cat f, of a map f is the least integer $n \ge 1$ with the property that X may be covered by n open subsets on each of which f is homotopic to a constant map; if

Received by the editors on Nov. 20, 1997.

¹⁹⁹¹ Mathematics Subject Classifications: 55M30.

Key words and phrases: Lusternik-Schnirelmann category.

no such integer exists, we put $cat f = \infty$. Of course cat f reduces to cat X when X = Y and f is the identity. For a subset A of X and an inclusion $i : A \to X$, cat i is generally written as $cat_X A$ and called the relative category, $cat_X A$, of a subset A in X. In this paper we shall define a Lusternik-Schnirelmann category of a subset with respect to a map which generalizes the above several Lusternik-Schnirelmann category of a subset with respect to a map which generalizes the above several Lusternik-Schnirelmann category of a subset with respect to a map and generalize many results of the above categories.

2. The relative Lusternik-Schnirelmann Category of a subset in a space with respect to a map

DEFINITION 2.1. Let A be a subset of X and $f : X \to Y$ a map. Then the relative Lusternik-Schnirelmann category, $cat_Y f_A$, of A in X with respect to f is the least integer n with the property that A can be covered by the n open subsets in A each of which f is homotopic to a constant map. If no such covering exists we say that the relative category of A in X with respect to f is infinite.

REMARK 2.2. (1) If $f = 1_X$, then $cat_X (1_X)_A = cat_X A$.

- (2) In fact, $cat_Y f_A = cat (fi)$, where $i : A \to X$ is the inclusion.
- (3) If $f \sim g : X \to Y$, then $cat_Y f_A = cat_Y g_A$.

(4) $cat_Y f_A = 1$ if and only if $f_{\mid_A} \sim * : A \to Y$.

(5) If A = X, then $cat_Y f_A = cat f$.

The following Theorem 2.3 says that $cat_Y f_A$ is subadditive.

THEOREM 2.3. If $f : X \to Y$ and $A \subset X$ and $A = A_1 \cup A_2$ and A_1, A_2 be open subsets of A, then $cat_Y f_A \leq cat_Y f_{A_1} + cat_Y f_{A_2}$.

Proof. Let $\operatorname{cat}_Y f_{A_1} = m$ and $\operatorname{cat}_Y f_{A_2} = n$. Then there exist coverings $\{U_i \mid U_i : \text{ open in } A_1, f_{\mid U_i} \sim * : U_i \to Y, i = 1, \cdots, m\}$ of A_1 and $\{V_j \mid V_j : \text{ open in } A_2, f_{\mid V_j} \sim *' : V_j \to Y, i = 1, \cdots, n\}$ of A_2 . Now we show that $\{U_i, V_j \mid U_i, V_j \text{ are open in } A_1, A_2 \text{ respectively},$

 $\begin{array}{l} f_{\mid V_i} \sim *: U_i \rightarrow Y, \ f_{\mid V_j} \sim *: V_j \rightarrow Y, \ i = 1, \cdots, m, \ j = 1, \cdots, n \} \\ \text{is an open covering of } A. \quad \text{Since } U_i \text{ is open in } A_1 \text{ and } A_1 \text{ is open in } A, \ U_i \text{ is open in } A. \quad \text{Similarly, } V_j \text{ is open in } A. \quad \text{Since } A_1 = \bigcup_i U_i, \\ A_2 = \bigcup_j V_j \text{ and } A = A_1 \cup A_2, \ \{U_i, \ V_j\} \text{ is an open covering of } A. \quad \text{Hence } \\ cat_Y \ f_A \leq cat_Y \ f_{A_1} + cat_Y \ f_{A_2}. \qquad \Box \end{array}$

COROLLARY 2.4. [1] If $X = A \cup B$ and A, B are open in X, then $cat f \leq cat f_{|A} + cat f_{|B}$.

THEOREM 2.5. If $A \subset B \subset X$, then $cat_Y f_A \leq cat_Y f_B$.

Proof. Let $\{V_{\alpha}\}$ be a covering of B such that each V_{α} is open in Band on each $V_{\alpha} f$ is null homotopic. Since $B \subset \bigcup_{\alpha} V_{\alpha}$ and A is subset of $B, A \subset \bigcup_{\alpha} (V_{\alpha} \cap A)$. Thus $\{V_{\alpha} \cap A\}$ is a covering of A such that each $V_{\alpha} \cap A$ is open in A and on each $V_{\alpha} \cap A f$ is null homotopic. This proves the theorem.

Taking B = X in Theorem 2.5, we have the following corollary.

COROLLARY 2.6. $cat_Y f_A \leq cat f$ for any subset A of X.

THEOREM 2.7. For any two maps $f : X \to Y$, $g : Y \to Z$ and a subset A of X, $cat_Z (g \circ f)_A \leq min \{cat_Y f_A, cat_Z g_{f(A)}\}$.

Proof. (1) We show that $cat_Z (g \circ f)_A \leq cat_Y f_A$. Let $\{U_\alpha\}$ be a covering of A such that for each α , U_α is open in A and $f \circ i_\alpha \sim * : U_\alpha \rightarrow$ Y. Then $g \circ f \circ i_\alpha \sim g \circ * = c_{g(*)} : U_\alpha \rightarrow Z$. Thus $cat_Z (g \circ f)_A \leq cat_Y f_A$. (2) We show that $cat_Z (g \circ f)_A \leq cat_Z g_{f(A)}$. Let $\{V_\alpha\}$ be a covering of f(A) such that for each α , V_α is open in f(A) and $g \circ i'_\alpha \sim * : V_\alpha \rightarrow Z$. Then for each α , there exists an open U_α in Y such that $V_\alpha = f(A) \cap U_\alpha$. Since f is continuous, $f^{-1}(U_\alpha)$ is open in X and $f^{-1}(U_\alpha) \cap A$ is open in A. Moreover $A \subset f^{-1} \circ f(A) = f^{-1}(\bigcup_\alpha V_\alpha) = \bigcup_\alpha (f^{-1}(U_\alpha) \cap A)$. Consider the following commutative diagram

$$\begin{array}{ccc} f^{-1}(U_{\alpha}) \cap A & \stackrel{i_{\alpha}}{\longrightarrow} X \\ f & & & \downarrow f \\ V_{\alpha} & \stackrel{i'_{\alpha}}{\longrightarrow} Y. \end{array}$$

Then $g \circ f \circ i_{\alpha} = g \circ i'_{\alpha} \circ f \sim * \circ f = *' : f^{-1}(V_{\alpha}) \to Z$. Thus cat_{Z} $(g \circ f)_{A} \leq cat_{Z} g_{f(A)}$. From (1) and (2), we know that $cat_{Z} (g \circ f)_{A} \leq \min \{cat_{Y} f_{A}, cat_{Z} g_{f(A)}\}$.

From Theorem 2.7 and Corollary 2.6, we have the following corollary.

COROLLARY 2.8. [4] For any two maps $f: X \to Y$ and $g: Y \to Z$ we have cat $(g \circ f) \leq \min \{ cat f, cat g \}$. In particular cat $f \leq cat X$ and cat $f \leq cat Y$.

COROLLARY 2.9. For any map $f: X \to Y$ and any subset A of X, $cat_Y f_A \leq min \{ cat_Y f(A), cat_X A \}.$

Proof. In Theorem 2.7, take $g = i_{f(A)} : f(A) \to Y$. Since $cat i_{f(A)} = cat_Y f(A)$ and $cat_Y f_A \leq cat i_A = cat_X A$, we know, from Theorem 2.7, that $cat_Y f_A \leq min \{cat_Y f(A), cat_X A\}$.

COROLLARY 2.10. Let $h : X' \to X$ has a left homotopy inverse $k : X \to X'$. Then for a subset A' of X', $cat_X h_{A'} = cat_{X'} A'$.

Proof. Since $cat_X h_{A'} = cat hi'$ and $cat_{X'} A' = cat i'$, we know, from Corollary 2.8, that $cat_X h_{A'} \leq cat_{X'} A'$. Thus we show that $cat_{X'} A' \leq cat_X h_{A'}$. Let $\{V_{\alpha}\}$ be a covering of A' such that for each α , V_{α} is open in A' and $hi_{\alpha} \sim * : V_{\alpha} \to X$. Thus $i_{\alpha} \sim khi_{\alpha} \sim c_{k(*)} : V_{\alpha} \to X'$. Therefore $cat_{X'} A' \leq cat_X h_{A'}$. This proves the corollary.

THEOREM 2.11. For a map $f : X \to Y$, let $h : X' \to X$ be a homotopy equivalence with homotopy inverse $k : X \to X'$. Let A' be a subset of X' such that $k \circ h(A') \subset A'$. Then $cat_Y (f \circ h)_{A'} = cat_Y f_{h(A')}$.

4

Proof. From Theorem 2.7, we have that $cat_Y (f \circ h)_{A'} \leq cat_Y f_{h(A')}$. Thus we show that $cat_Y f_{h(A')} \leq cat_Y (f \circ h)_{A'}$. Let $\{V_\alpha\}$ be a covering of A' such that for each α , V_α is open in A' and $f \circ h \circ i'_\alpha \sim *$: $V_\alpha \to Y$. Then for each α , there exists an open set U_α in X' such that $V_\alpha = A' \cap U_\alpha$. Since k is continuous, $k^{-1}(U_\alpha)$ is open in X and $h(A') \cap k^{-1}(U_\alpha)$ is open in h(A'). Since $\{V_\alpha\}$ is a covering of A' and $k \circ h(A') \subset A', h(A') \subset k^{-1}(A') \subset k^{-1}(\bigcup_\alpha V_\alpha) \subset \bigcup_\alpha [k^{-1}(U_\alpha)]$. Thus $h(A') \subset \bigcup_\alpha (h(A') \cap k^{-1}(U_\alpha))$. Since $f \circ h \circ i'_\alpha \sim * : V_\alpha \to Y$, there exists a continuous function $K : V_\alpha \times I \to Y$ such that $K(, 0) = f \circ h \circ i'_\alpha$ and $K(, 1) = c_*$. Define $H : h(A') \cap k^{-1}(U_\alpha) \times I \to Y$ by H(x, t) =K(k(x), t). Then since K and k are continuous maps, H is continuous map. From the following commutative diagram

$$egin{array}{cccc} V_lpha & \stackrel{i'_lpha}{\longrightarrow} & X' \ & & & & & \downarrow h \ & & & & \downarrow h \ h(A') \cap k^{-1}(U_lpha) & \stackrel{i_lpha}{\longrightarrow} & X, \end{array}$$

$$\begin{split} H(x,0) &= K(k(x),0) = f \circ h \circ i'_{\alpha} \circ k(x) = f \circ i_{\alpha} \circ h \circ k(x). \text{ Since } 1_{X} \sim hk : X \to X, \text{ there exists a continuous function } R : X \times I \to X \text{ such that } R(\ ,0) = 1_{X}, \ R(\ ,1) = h \circ k. \text{ Define } G : h(A') \cap k^{-1}(U_{\alpha}) \times I \to Y \text{ by} \end{split}$$

$$G(x,t) = egin{cases} f \circ R(x,2t) & ext{if} \quad 0 \leq t \leq rac{1}{2}, \ H(x,2t-1) & ext{if} \quad rac{1}{2} \leq t \leq 1. \end{cases}$$

For $t = \frac{1}{2}$, $f \circ R(x, 1) = f \circ h \circ g(x) = f \circ i_{\alpha} \circ h \circ g(x) = H(x, 0)$. Thus *G* is well-defined and continuous. Since $G(x, 0) = f \circ R(x, 0) = f(x) = f \circ i_{\alpha}(x)$, $G(x, 1) = H(x, 1) = K(k(x), 1) = c_*$, $f \circ i_{\alpha} \overset{G}{\sim} c_* : h(A') \cap k^{-1}(U_{\alpha}) \to Y$. Hence $\{h(A') \cap k^{-1}(U_{\alpha})\}$ is an open covering of h(A')and $f \circ i_{\alpha} \sim * : h(A') \cap k^{-1}(U_{\alpha}) \to Y$. Therefore $cat f_{h(A')} \leq cat f \circ h_{A'}$. This proves the theorem. In Theorem 2.11, taking $f = 1_X : X \to X$ and applying Corollary 2.10 and Remark 2.2(1), we have the following corollary.

COROLLARY 2.12. [4] Let $h : X' \to X$ be a homotopy equivalence and A' a subset of X'. Then $cat_{X'} A' = cat_X h(A')$. In particular, cat X' = cat X.

From now on we turn our attention to path connected spaces with base point *. If there is an open neighborhood of * which is contractible in a space, then we describe the space as *categorically well based*. In the *n*-fold topological product $\Pi^n X$ of a pointed space X with itself, let $T^n X$ be the subspace of $\Pi^n X$ consisting of the *n*-tuples (x_1, \dots, x_n) such that a least one of the x_i equals *. Then we have the following theorem which is a generalized result of James[4].

THEOREM 2.13. Suppose that A is a normal subspace of X and Y is a path-connected and categorically well based space, and $f: X \to Y$ is a continuous map. Then $cat_Y f_A \leq n$ if and only if there exist a continuous function $g: A \to T^n Y$ such that the following diagram is homotopy commutative;

$$\begin{array}{ccc} A & \stackrel{g}{\longrightarrow} & T^n Y \\ fi_A & & j \\ Y & \stackrel{\Delta}{\longrightarrow} & \Pi^n Y. \end{array}$$

Proof. Since $\Delta \circ f \circ i_A$ and $j \circ g$ are homotopic, there exists a continuous function $h_t : A \to \Pi^n Y$ such that $h_0 = \Delta \circ f \circ i_A$, $h_1 = j \circ g$. Since Y is categorically well-based, there exist an open neighborhood N of * which N is contractible in Y, that is, $i \sim * : N \hookrightarrow Y$. For all $k = 1, \dots, n$, let $U_k = h_1^{-1} \circ p_k^{-1}(N)$, where $p_k : \Pi^n Y \to Y$ is the projection. Then U_k is open in A. Since $i \sim * : N \to Y$, there exists a continuous map $K_t : N \to Y$ such that $K_0 = i$ and $K_1 = c_*$. Let $\gamma_t = K_t \circ p_k \circ h_1 : U_k \stackrel{p_k \circ h_1}{\to} N \stackrel{K_t}{\to} Y$. Then $\gamma_t : U_k \to Y$ is continuous and

$$\gamma_0 = K_0 \circ p_k \circ h_1 = i \circ p_k \circ h_1 = p_k \circ h_1,$$
$$\gamma_1 = K_1 \circ p_k \circ h_1 = c_* \circ p_k \circ h_1 = c_*.$$

Define $R_t: U_k \to Y$ by

$$R_t = \begin{cases} p_k \circ h_{2t} & \text{if} \quad 0 \le t \le \frac{1}{2} \\ \gamma_{2t-1} & \text{if} \quad \frac{1}{2} \le t \le 1. \end{cases}$$

By the pasting lemma, R_t is continuous and

$$egin{aligned} R_0(x) &= p_k \circ h_0(x) = p_k \circ (\Delta \circ f \circ i_A)(x) = f(x) = f \circ i_k(x), \ R_1(x) &= \gamma_1(x) = c_*(x) = *, \end{aligned}$$

where $i_k : U_k \to X$ is the inclusion. Thus $f \circ i_k \sim * : U_k \to Y$. Moreover, since $\bigcup U_k = \bigcup [h_1^{-1} \circ p_k^{-1}(N)] = h_1^{-1}[\bigcup p_1^{-1}(N)] = h_1^{-1}[(N \times X \times \cdots \times X) \bigcup (X \times N \times \cdots \times X) \bigcup \cdots \bigcup (X \times X \times \cdots \times N)] = h_1^{-1}[\Pi^n X] = A, \{U_k\}$ is a covering of A. Hence $cat_Y f_A \leq n$. Conversely, suppose $\{V_k | V_k \text{ is open in } A, 1 \leq k \leq n\}$ is a covering of A each of which f is homotopic to a constant map. For each $k = 1, \cdots, n$, there exists a continuous function $g_k : V_k \times I \to Y$ such that

$$g_k(, 0) = f \circ i_k, \ g_k(, 1) = c_{x_k},$$

where $i_k : V_k \to X$ is the inclusion. Since Y is path-connected, for each $k = 1, \dots, n$, there exists a path $p_k : I \to Y$ such that $p_k(0) = x_k, p_k(1) = *$. Let $h_k : V_k \times I \to Y$ be given by

$$h_k(x,t) = \begin{cases} g_k(x,2t) & \text{if } 0 \le t \le \frac{1}{2} ,\\ p_k(2t-1) & \text{if } \frac{1}{2} \le t \le 1. \end{cases}$$

Then h_k is continuous and $h_k(, 0) = g_k(, 0) = f \circ i_k$, $h_k(, 1) = p_k(1) = c_*$. Since A is normal, there exists a covering $\{A_1, \dots, A_n \mid A_k \text{ is closed} \text{ in } A$, for all $k\}$ of A with the property that for each $k = 1, \dots, n$, there exists an open set W_k in A such that $A_k \subset W_k \subset \overline{W}_k \subset V_k$. Since A_k and $A - W_k$ are disjoint sets, by the Urysohn's lemma, there exists a

map $\gamma_t : A \to I$ such that $\gamma_k(A_k) = 1$, $\gamma_k(A - W_k) = 0$. Define a map $d_k : A_k \times I \to Y$ by

$$d_k(a,t) = egin{cases} f(a) & ext{if} \quad a \in A - ar{W_k}, \ h_k(a,t\gamma_k(a)) & ext{if} \quad a \in V_k. \end{cases}$$

Then d_k is well defined and continuous. Let $d : A \times I \xrightarrow{\Delta} (A \times I) \times \cdots \times (A \times I) \xrightarrow{d_1 \times \cdots \times d_n} Y \times \cdots \times Y$. Then d is continuous and $d(a,0) = (d_1(a,0), \cdots, d_n(a,0)) = (f(a), \cdots, f(a)) = \Delta \circ f \circ i_A(a)$. Let $a \in A = \bigcup A_k$. Then there exists a subset A_{k_0} such that $a \in A_{k_0}$ and $\gamma_{k_0}(a) = 1$. Since $a \in A_{k_0} \subset V_{k_0}$,

$$d_{k_0}(a,1) = h_{k_0}(a,\gamma_{k_0}(a)) = h_{k_0}(a,1) = c_*(a) = *.$$

Thus $d(a, 1) = (d_1(a, 1), \dots, d_n(a, 1)) \in T^n Y$. Let $g = d(, 1) : A \to T^n Y$. Then $\Delta \circ f \circ i_A \stackrel{d}{\sim} j \circ g$. This proves the theorem. \Box

COROLLARY 2.14. [4] Suppose that X is normal, and Y is a pathconnected and categorically well based space, and $f: X \to Y$ is a continuous map. Then cat $f \leq n$ if and only if there exist a continuous function $g: X \to T^n Y$ such that the following diagram is homotopy commutative;

$$\begin{array}{cccc} X & \stackrel{g}{\longrightarrow} & T^n Y \\ f & & j \\ Y & \stackrel{\Delta}{\longrightarrow} & \Pi^n Y. \end{array}$$

THEOREM 2.15. Let $F \xrightarrow{i} E \xrightarrow{p} B$ be a fibration and $B' \subset B$ a path connected categorically well based such that $E' = p^{-1}(B')$ is a normal categorically well based path connected space. Then $cat_E E' \leq cat_{E'} i \cdot cat_{B'} p_{E'}$. In particular, $cat_E E' \leq cat_{E'}F \cdot catB'$.

Proof. Let $cat_{B'} p_{E'} = n$. Then by Theorem 2.13, there exists a map $\phi : E' \to T^n B'$ such that the following diagram is homotopy

8

commutative;

where $i': E' \to E$ is the inclusion. Thus there exists a continuous function $H: E' \times I \to \Pi^n B'$ such that

$$H(,0) = \Delta_{B'}^n \circ (p \circ i') = \Pi^n (p \circ i') \Delta_{E'}^n,$$

$$H(,0) = j_{B'} \circ \phi.$$

Consider the following commutative diagram

$$\begin{array}{cccc} E' & \xrightarrow{\Delta_{E'}^n} & E' \times \cdots \times E' \\ pi' & & & & & \\ B' & \xrightarrow{\Delta_{B'}^n} & B' \times \cdots \times B'. \end{array}$$

Since $p \circ i' : E' \to B'$ is a fibration, $\Pi^n(p \circ i') : \Pi^n E' \to \Pi^n B'$ is a fibration. For the commutative diagram

$$E' \times \{0\} \xrightarrow{\Delta_{E'}^n} \Pi^n E'$$

$$\downarrow inj \qquad \qquad \qquad \downarrow^{\Pi^n(pi')}$$

$$E' \times I \xrightarrow{H} \Pi^n B',$$

there exists a continuous function $G: E' \times I \to \Pi^n E'$ such that

$$G(\ ,0)=\Delta_{E'}^n,\ \Pi^n(p\circ i')\circ G=H.$$

Let $\phi' = G(, 1) : E' \times \{1\} \to \Pi^n E'$. Then $\Pi^n(p \circ i') \circ \phi' = \Pi^n(p \circ i') \circ$ $G(, 1) = H(, 1) = j_{B'} \circ \phi : E' \to \Pi^n B'$. Therefore

(1)
$$\Pi^n(p \circ i) \circ \phi' = j_{B'} \circ \phi$$

Let $cat_{E'}$ $i_F = m$. By Theorem 2.13, there exists a function $\theta : F \to T^m E'$ such that the following diagram is homotopy commutative;

Thus there exists a continuous function $K: F \times I \to \Pi^m E'$ such that $K(,0) = \Delta_{E'}^m \circ i, K(,1) = j_{E'} \circ \theta$. Since (B',*) is a closed cofibred pair, by the Str ϕ m's theorem [11], (E',F) is a cofibred pair. That is, $F \xrightarrow{i} E'$ is cofibration. Thus for a space $\Pi^m E'$, a map $g = \Delta_{E'}^m \circ i$ and a continuous function $K: F \times I \to \Pi^m E'$ such that K(,0) = g, there is a continuous function $\bar{K}: E' \times I \to \Pi^m E'$ such that

$$\bar{K}(\ ,0) = \Delta^m_{E'}, \ \bar{K} \circ (i \times 1) = K.$$

Let $\tau = \bar{K}(, 1) : E' \to \Pi^m E'$. Then $\tau \circ i = \bar{K} \mid_{F \times \{1\}} = K(, 1) = j_{E'} \circ \theta$. That is,

Since the following diagram is commutative

 $\Pi^{n}(\tau) \circ \phi' \stackrel{\bar{K}\phi'}{\sim} \Pi^{n}(\Delta^{m}_{E'}) \circ \phi' \stackrel{\Pi^{n}(\Delta^{m}_{E'}) \circ G}{\sim} \Pi^{n}(\Delta^{m}_{E'}) \circ \Delta^{n}_{E'} = \Delta^{mn}_{E'}.$ That is, $\Pi^{n}(\tau) \circ \phi' \sim \Delta^{mn}_{E'}.$

Let $x \in E'$. We know, by (1), that

$$\Pi^n(p \circ i) \circ \phi'(x) = j_{B'} \circ \phi(x) = \phi(x) \in T^n B'.$$

Thus there is an element $x_f \in F$ such that $\phi'(x) = (x_1, x_2, \cdots, x_f, \cdots, x_n)$, where F is subset of E'. From (2), we know that $\tau \circ i = j_{E'} \circ \theta$. Thus

$$\Pi^{n}(\tau) \circ \phi'(x) = \Pi^{n}(\tau)(x_{1}, x_{2}, \cdots, x_{f}, \cdots, x_{n})$$

$$= (\tau(x_{1}), \tau(x_{2}), \cdots, \tau(x_{f}), \cdots, \tau(x_{n}))$$

$$= (\tau(x_{1}), \tau(x_{2}), \cdots, \theta(x_{f}), \cdots, \tau(x_{n}))$$

$$= (\tau(x_{1}), \tau(x_{2}), \cdots, (\cdots, *, \cdots), \cdots, \tau(x_{n})),$$

where $\theta: F \to T^m E'$ and $(\cdots, *, \cdots) \in T^m E'$. Therefore at least one coordinates of $\Pi^n(\tau) \circ \phi'(x)$ is the base point of E'. That is, there is a map $\Pi^n(\tau) \circ \phi': E' \to T^{mn}E'$ such that

$$j\Pi^n(au)\circ\phi'\sim\Delta^{mn}_{E'}.$$

Hence by Theorem 2.13, $cat_E E' \leq mn = cat_{E'} i_F \cdot cat_{B'} p_{E'}$. In particular, we have, from Corollary 2.9, that

$$cat_{E'} i_F \leq cat_{E'} i(F) = cat_{E'} F$$
$$cat_{B'} p_{E'} \leq cat_{B'} p(E') = cat_{B'} B' = cat B'.$$

Thus $cat_E E' \leq cat_{E'}F \cdot cat B'$.

In Theorem 2.15, taking B' = B, we have the following corollary.

COROLLARY 2.16. [4] Let $F \xrightarrow{i} E \xrightarrow{p} B$ be a fibration, and B a path connected categorically well based space and E a normal categorically well based path connected space. Then cat $E \leq \text{cat } i \cdot \text{cat } p$. In particular, cat $E \leq \text{cat } F \cdot \text{cat } B$.

References

- I. Berstein and T. Ganea, The category of a map and of a cohomology class, Fund. Math. 50 (1961/2), 265-279.
- 2. Y. Felix and J. M. Lemaire, On the mapping theorem for Lusternik-Schnirelmann category, Topology Vol. 24 (1985), 41-43.
- 3. R. H. Fox, On the Lusternik-Schnirelmann category, Ann. Math. 42(1941), 333-370.

2 - ² - C

- I. M. James, On category, in the sense of Lusternik-Schnirelmann, Topology. Vol. 17(1978), 331-348.
- 5. I. M. James, Lusternik-Schnirelmann Category : Handbook of Algebraic Topology, Elsevier Science B. V. (1995), 1293-1310.
- 6. L. F. Liu, On some mapping properties of the Lusternik-Schnirelmann category, Topology and its Applications 55(1994), 153-162.
- 7. L. Lusternik and L. Schnirelmann, Method es Topologiques dan les Problemes Variationnels, Herman, Paris (1934).
- 8. C. McCord and J. Oprea, Rational Lusternik-Schnirelmann Category and the Arnol'd conjecture for nilmanifolds, Topology 32(4)(1993), 701-717.
- 9. C. R. F. Mounder, Algebraic Topology, Van Nostrand-Reinhold, London, 1970.
- 10. A. J. Sieradski, An Introduction to Topology and Homotopy, PWS-KENT Publishing Company Boston, 1992.
- 11. E. H. Spanier, Algebraic Topology, McGraw-Hill Book Company, 1966.
- 12. A. Strom, Note on cofibrations II, Math. scand. 22 (1968), 130-142.
- 13. R. M. Switzer, Algebraic Topology : Homotopy and Homology, Springer-Verlag, 1975.
- 14. G. W. Whitehead, Elements of Homotopy Theory, Springer-Verlag, 1978.

DEPARTMENT OF MATHEMATICS HANNAM UNIVERSITY TAEJON, 306-791, KOREA