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UNIQUENESS OF MEROMORPHIC
FUNCTIONS SHARING THE SAME 1-POINTS

INDRAJIT LAHIRI

ABSTRACT. We prove a uniqueness theorom for meromrphic func-
tions which share the same 1-points.

1. Introduction and Definitions

Let f,g be two nonconstant meromorphic functions defined on the
open complex plane C. If f and g have the same a-points with the
same multiplicities, we say that f and g share the value a CM (country
multiplicities). We do not explain the standard notations and defini-
tions of Nevanlinna’s theory of meromorphic functions becuase these
are available in [4]. We denote by E a set of real numbers with finite
linear measure, not the same at each occurrence.

Ozawa [6] initiated the problem of uniqueness of entire functions on
the basis of sharing the 1-points. His result can be stated as follows:

THEOREM A [6]. Let f and g be two nonconstant entire functions.
If f, g share 1 CM with 6(0; f) > 0 and 0 is lacunary for g, then either

f=gorf-g=1.

Extending this problem to meromorphic functions Yi proved the fol-
lowing theorems.

THEOREM B [7]. Let f and g be two nonconstant meromorphic
functions satisfying 6(oco; f) = 8(o0;9) = 1. If f,g share 1 CM and
0(0; f) + 6(0;9) > 1 then either f=gor f-g=1.
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THEOREM C [8]. Let f and g be two nonconstant meromorphic
functions such that f and g share 1, co CM. If §(0; f) + 8(0;9) +
20(00; f) > 3 then either f =g or f.g=1.

THEOREM D [9]. Let f and g be two nonconstant meromorphic fuc-
tions such that f, g share 1, oo CM. If N(r,0; f)+N(r,0;9)+2N(r, f) <
(A+0(1)) x max{T(r, f),T(r,g)} for r ¢ E, where A < 1 then either
f=gorf.-g=1.

Gangdi [2] proved the following uniqueness theorem for meromorphic
functions which involves sharing of functions.

THEOREM E [2]. Let f,g be nonconstant meromorphic functions
and p,\ be two meromorphic functions such that T(r,p) = S(r, f),
T(r,A) = S(r,g) If f,g share co CM, f — u,g — A share 0 CM and
0(0; f) +©(o0; f) > 3/2,6(0; g) + O(00; g) > 3/2 then either \-f=p-g
or f-g=u-A

We note that for A = u = 1, theorem E is weaker than Theorem C.
Improving Theorem B recently Yi and Yang [10] proved the following
result.

THEOREM F. (cf. [10]) Let f and g be two nononstant meromorphic
functions saitsfying ©(oo; f) = ©(o0;g) = 1. If f,g share 1 CM and
5(0; f) + 6(0; g) > 1 then either f =g or f-g=1.

The purpose of this paper is to make some further investigations
on the problem of uniqueness of meromorphic functions sharing same
1-points.

Following definitions will be reugired in the sequel.

DEFINITION 1 [1]. For a meromorphic function f and a positive in-
teger p, Np(, a; f) denotes the counting function of a-points of f where
an a-point with multiplicity m is counted m times if m < p and p times
ifm>p.

DEFINITION 2 [9]. For a meromorphic function f we put é,(a; f) =
N .
1—limsupL(r’a’—f). Then clearly 0 < 6(a; f) < dp(a; f) < dp—1(a; f) <

7—00 T(’I‘, f) -
- < d2(a; f) £ d1(a; f) =O(a; f) < 1.
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In all the theorems from A to F we see that one of the following two
conditions is necessary:

(i) f, g share oo CM,

(ii) 8(00; f) = &(0059) =1 or ©(ooc; f) = ©(00;9) = 1.

In the paper we prove uniqueness theorems for meromorphic func-
tions without considering the above two conditions.

2. Lemmas

In this section we present some lemmas which will be used to prove
the main results.

LEMMA 1 [8]. Let fi, f2, f3 be nonconstant meromorphic functions
satisfying fi + fo + fa = 1. If fi1, fo, f3 are linearly independent then
91 = —f3/f2, g2 = 1/ f2 and g3 = — f1/ f2 are also linearly independent.

LEMMA 2. Let fi, fo be nonconstnat meromorphic functions such
that af; + bfs = 1 where a,b are nonzero constants. Then

T(r, f1) < N(r,0; f1) + N(r,0; f2) + N(r, f) + S(r, f)-

Proof. By the second fundamental theorem we get

T(r, fi) < N(r,0; i) + N(r,a”%; fi) + N(r, /1) + S(r, f1)
= N(r,0; f1) + N(r,0; f2) + N(r, f1) + S(r, f1)

and this proves the lemma. 0
LEMMA 3 [3],[5]. Let fi, f2, -, fp be linearly independent mero-

P
morphic functions satisfying Z fi = 1. Then for i = 1,2,--- ,p and

=1

forr¢ E

14 14
T(r, fi) < Y_N(r,0; f;) + N(r, fs) + N(r,D) = Y_N(r, f;)
j=1 j=1
— N(r,0; D) + ofT(r)},
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where D is the wronskian determinant of fi, fa,- -+ , fp and
T(r) = max {T(r,£;)}.

LEMMA 4. Let fi, fa, f3 be nonconstnat meromorphic functions such
that fi+ fa+ fa = 1. If fi, fo, fs are linearly independent then forr ¢ E

3
T(r, fs) < )_ Na(r,0; f;) + max {Na(r,00; fi) + Na(r, 00; f;)}
j=1 G#E)

+o{T(r)},
where T'(r) = lrél?%cs{T(r, i}

Proof. By Lemma 3 we get

3
T(r, i) < »_N(r,0; f;) — N(r, f2) — N(r, f3) + N(r, D)

=1

1) — N(r,0;D) + o{T(r)},

where D is the wronskian determinant of fy, f2, f3.
We prove the following two inequalities which combined with (1) will
prove the lemma:

3 3
(2) D N(r,0; f;) — N(r,0;D) < ) No(r,0; f;)
j=1 =1
and

N(r, D) < N(r, f2) + N(r, ) + max {No(r,c0; fi)

Q#5)

(3) + No(r, 00; f7)}-

If 2o is neither a zero nor a pole of meromorphic function, we agree
to call it a zero of the function with multiplicity zero.
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Now if 2 is a zero of some f;(1 < j < 3) with multiplicity p then it
is a zero of D with multiplicity at least max{0, p — 2}. So the inequality
(2) is proved.

To prove inequality (3) we first note that a pole 29 of D is a pole
of at least one of fi, f2, f3 and conversely. We now consider following
cases.

Case 1. Let 29 be not a pole of f;. Since fo+ fs =1— fi, it follows
that zp is not a pole of f2 + f3. Since 2 is a pole of at least one of
f1, fo, fs, it follows that zp is a pole of f2 and f3 of the same multiplicity
m, say (becuase the singularities of fo and f3 at zp cancel each other).

Swce D - | BT B B L N

ince D = | ;7 % “enl s 20 is a pole of D with multiplicity not
i+ f5 f3

exceeding

(4) m+2<m+m+(1+1).

Case 2. Let 2y be a pole of f; with multiplicity m(> 1). Since
fo+ fa=1-—r;, we see that 2 is a pole of fz + f3 with multiplicity m.
We further consider the following subcases.

Subcase (i). Let z, be a pole of fo with multiplicity m and a pole

A /
of f3 with multiplicity ¢(1 < ¢ < m). Since D = ;;2, ; 2,

, 2o is a pole

of D with multiplicity not exceeding
(5) m+q+3=m+q+(2+1).

Subcase (ii). Let 2y be a pole of fo and f3 with the same mul-
tiplicity m. Then there exist two functions ¢, ¥ which are analytic
at zop and &(z0) # 0,¥(zp) # O such that in some neighbourhood
of z5, Fa(z) = (2 — z9) ™¢(2) and f3(2) = (z — 20)"™¥(2). Also
D = f; fi — f3 f3 shows that 2 is a pole of D with multiplicity not
exceeding 2m + 3; but by actual calculation we see that the coefficient
of (z— 29)~?™*+3) is m?(m + 1)¢¥ — m2(m+ 1)¢¥ = 0. So s is a pole
of D with multiplicity not exceeding

(6) 2m+2=m+m+(1+1)
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Subcase (iii). Let 2y be a pole of fy with multiplicity m but zg is
not a pole of f3. We note that 2 is a pole of f; with multiplicity m.
Since D = f3 f5' — f3 f4, 2o is pole of D with multiplicity not exceeding

(7) m+2=m+0+(1+1).

Subcase (iv). Let zg be a pole of f; with multiplexity m+p(p > 1).
Then zp is also a pole of f3 with multiplicity m + p and the terms
containing (2—2p)~(™+1), (z—2p)~(m+2) ... (z—2)~("tP) in Laurent
expansion of f and f3 about zp cancel each other because f2 + f3 has
i+ 55 1}
2/’ + fél é/
that zg is a pole of D with multiplicity not exceeding

a pole at zp with multiplicity m. Since D = , it follows

(8) 2m+p+3<(m+p)+(m+p)+(1+1).

Combining (4), (5), (6), (7) and (8) the inequality (2) can be ob-
tained. This proves the lemma. O

3. Theorem

In this section we discuss the main results.

THEOREM 1. Let f,g be two nonconstant meromorphic functions
sharing 1 CM. If Na(r,0; f)+ Na(r,0; g) +2Na(r, 00; f)+2Nao(r, 00; g) <
{A+0o(1)} x max{T(r, f),T(r,9)} for r ¢ E where X\ < 1 then either
f=goff-g=1.

COROLLARY. Let f,g be two nonconstant meromorphic functions
sharing 1 CM. If 62(0; f) + 82(0; g) + 282(00; f) + 282(c0; g) > 5 then
either f=gor f-g=1.

Following example shows that the theorem and the corollary are
sharp.

EXAMPLE. Let f = exp(z), ¢ = 2 — exp(z). Then f,g share 1
CM and Na(r,0; f) = 0, Na(r, 00, g) = 0, Na(r, 00; f) = 0, Na(r,0;g) ~

T(r,exp(2)), T(r, f) = T(r,exp(2)), T(r, f) = T(r,exp(2)), T(r,g) =
T(r,exp(z)) + 0(1), but neither f =g nor f-g=1.
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Proof of Theorem 1. Let

(9) pei=1

g—1
Since f,g share 1 CM, it follows that poles and zeros of h occur only
at the poles of f and g respectively. Also we note that No(r,00;h) <
N2(’I‘, 003 f) and N2(7', 0; h) < N2('I", 1532} g)'

We put fi = f, fo = h, fs = —gh so that

(10) h+fot+fz=1

Let h = k, a constant. If k # 1 from (10) we get 27 f — t£zg =1 and
80 by Lemma 2 it follows that

T(T,f) < N2(ra0; f) + N2(r>0;g) + N2(T,00;f) + S(’I‘,f)
and

T(r,g) < Na(r,0; f) + Nz(r,0;g) + Na(r, 00; g) + S(r, 9).

This shows in view of the given condition that

max{T(r, ), T(r,g)} < {)+ o(1)} max{T(r, f),T(r, )},which is a
contradiction because A < 1. Hence k=1 and so f = g.

Now let h be nonconstant. If possible, suppose that fi, fa, fa are
linearly independent. Then by lemma 4 we get

3
T(r, f) = T(T’ fl) < Z NQ(T, 0; f])
=1
+ max {Na(r,0; f;) + Na(r, 0; f;)} + o T(r)}.
Ti;ﬁ
(11) <Na(r,0; f) + Na(r,0; g) + 2Nz(r,0; h)
+ max {Na(r,0; f;) + Na(r, 0; £;)} + o{T(r)}
G
SN2(T7 0; f) + N2(7‘1 0; g) + 2N2(T, 00; g)
+ max {Na(r,0; fi) + No(r, 0; 5)} + o{T(r)}

G#)
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Now by (9)

N3(r,00; f1) + Na(r, 00, f3) = Na(r,00; f) + Na(r, 00; h(g — 1))
= Nz(’f', 05 f) + Ng(?‘, 00, f - 1) = SNZ(T’ 00; f),
Na(r,00; f3) + Na(r, 00; f2) + Na(r,00; h(g — 1)) + Na(r, 00; h)
< Na(r,00; f — 1) 4+ Na(r, 00; f) = 2Na(r, o0; f), and
Na(r,00; f2) + Na(r, 00; f1) = Na(r, 00; k) + Na(r,00; f) < 2Na(r, 00; f)
So from (11) we obtain
(12)
T(r) f) S N2(’I", 0; f)+N2(1", 0, g)+2N2(r, oQ; f)+2N2(T) o0, g)+O{T(’I‘)}
Now we put g1 = —f3/ f2, g2 = 1/ f2 and g3 = —f1/ f2. Then by lemma
1 and Lemma 4 we get similarly
(13)
T(r,g) < Na(r,0; f)+Na(r,0; g)+2Na(r, 00; f)+2N2(r, 00; g)+0{T(r)}.

By the given condition we get from (12) and (13)
max{T'(r, f),T(r,9)} < {X+ o(1)} max{T(r, f), T(r,9)},

which is a contradiction becuase A\ < 1.
Hence there exist constants ¢;, ¢z, c3, not all zero, such that

(14) cifi+cafa+cafs=0.

If possible, let ¢; = 0. Then from(14) we get (c2 — cag)h = 0. Since
h # 0, it follows that g is a constant which is a contradiction. So ¢; # 0.
Now eliminating f; from (10) and (14) we get

(15) cfo+dfs =1,

where ¢ = 1—¢3/c; and d = 1—c3/c;. We consider the following cases.
Case 1. Let c-d # 0. Then from(15) we get - + %g =1 and so by
Lemma 2 it follows that
T(’I‘, g) S N2(T, O; g) + N2(7‘, o5 h’) + NZ(T’ 2N g) + S(’I‘, g)
(16) < No(r,0; g) + Na(r, 00; f) + Na(r,00;g) + S(r, g).
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since f,g share 1 CM, we get by the second fundamental theorem in
view of (16) that

T(r, f) < N(r,0; f) + N(r,1; f) + N(r,00; f) + 8(r, )
< Na(r,0; f) + N(r,1; g) + Na(r, 00; f) + S(r, f)
< No(r,0; f) + T(r, g) + Na(r,00; f) + S(r, f)

< Na(r,0; f) + Na(r,0; g) + 2N2(r, 005 f)

+ Ng('f',OO;g) + S(T’ f) + S(r7g)‘

So by the given condition we see that

max{T(r, f), T(r, g)} < {A+ o(1)} - max{T(r, f),T(r,9)}.
Which is a contradiction because A < 1. Hence the case ¢ d # 0 does

not arise.

Case 2. Let ¢c-d = 0. From (15) we see that c and d are not
simultaneously zero. We consider the following subcases.

Subcase (i). Let d = 0. Then from (15) we get
(17) cf—g=c—1

If ¢ # 1we obtain from (17), =% f — 259 = 1. So by Lemma 2 we see
that

T(r, f) < Na(r,0; f) + Na(r,0; g) + Na(r,00; ) + S(r, f)
and

T(T,g) < Ng(’l", 07 f) + N2(T) ) g) + Nz(T, (S °H g) + S(T, g)‘
This implies by the given condition that
max{T(r, f), T(r,g)} < {A+ o(1)} max{T(r, f), T(r,9)},

which is a contradiction because A < 1. Hence ¢ = 1 and so from (17)
we get f =g.
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Subcase (ii). Let ¢ = 0. Then from (15) we get
(18) df —1/g=d—1.
If d # 1we obtain from (18) that

d 1

g A o .

1
g
So by Lemma 2 and the first fundamental theorem it follows that

T(T,f) S N2(T,0; f) + N2(T)Oo;g) + N2(r7°°; f) + S(ra f)
and

T(r,g) < No(r,0; f) + Na(r,0; g) + Nz(r,00; g) + S(r, 9)-

This implies by the given condition that

max{T(r, f), T(r,9)} < {A+ o(1)} max{T(r, f),T(r,9)},

which is a contradiction because A < 1. Hence d = 1 and so from (18)
we get f - g = 1. This proves the theorem. g

In the line of Theorem 1 we can prove the following more general
result.

THEOREM 2. Let f,g be two nonconstant meromorphic functions
and a(z)(= p),b(z)(=P) be two meromorphic functions such that

T(r,a) = o{T(r)}, T(r,b) = o{T(r)}
asr — oo (r ¢ E) where T(r) = max{T(r, f),T(r,9)}. If f —a,g—b
share 0 CM and Na(r,0; f)+ Na(r,0; g) +2Na(r, 00; ) +2N2(r, 00; g) <
{Ao(1)}-T(r) forr ¢ E where A < 1 then eitherbf = agor f-g = a-b.
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