UEXN DE0l e 2 WEHNINM A4 LT2IES 2B HAIX SEEQ % HAH 2855

2 ¢

AAe B4 AFLAA 7124 EA de@vh f<l(n-1/2] dd el 3 ==d 948 Hdl f 335 A
HERZAA n 79 =2d @t 85 AxAE AAZ YA A ANE FAY, 29Y F28 FAHse
£ WAlF BFEsE e AE A7) dE FY EA Wi &3k B =8 2dd H2E olgsd 04y
A el & v #A MEedAdgA A 44 dneEL AT WA BREL we AN o) dg &
o

|
£l

ofl

rok

Lower Bound of Message Complexity for Election
Alogorithm in a Complete Network with Intermittent Faults

Seong-Dong Kim'

ABSTRACT

Election is a fundamental problem in the distributed computing. We consider n nodes in the network with f
maximum number of faulty links incident on each node, where f<|(n-1)/2]. In general, electing a leader, finding the
maximum identifier and constructing a spanning tree belong to the same class in the distributed computing because
of the same order of the message complexity. Using a spanning tree, we prove that the lower bound of message
complexity for a leader election algorithm in an asynchronous complete network with intermittent link faults is O(r).

1. Introduction

The complete network is a network of n identical
nodes except that each node has its own unique iden—
tifier from a totally ordered set. In this network, each
node has n - I incident links. Communication can
be executed in either a synchronous or an asynch-

ronous mode. We consider the election problems in

t4 2 9 A AAFAAN ARENYE SAT7
=S 1998 79 8, AAMEE 11998 99 159

an asynchronous complete network. Election is a
fundamental problem in the distributed co'mputing‘
This problem is choosing a unique node as the leader
of a network. Before starting election algorithm, no
node knows the identifier of any other node. There-
fore, the network cannot choose a predetermined lea-
der. However, it is possible to elect a predetermined
node as the leader of a network. In the latter case,
if the leader fails or malfunctions, for instance, in the
distributed file system, then it needs to choose a new

2856 St=dEMalEtel =FR MST M11=0811)

leader from the rest nodes in the network in order
to maintain the proper operation of whole system.
The other applicatioﬁs of the electmg 1eader problem
contain regeneration of a lost unique token, concurr-
ency control, recovery by electing a new central lock
coordinator after crashing a coordinator in a distri-
buted databasc system, and replacement a primary
site in a replicated file system[1][2].

Before or during execution of the election algo-
rithms, failures, which complicate the election problem,
of nodes and communication links may occur. Fisch-
er, Lynch and Paterson{3] proved that there is no
election algorithm to solve the choosing leader pro-
blem if a node fails by crashing in an asynchronous
complete network even though all the links are rel-
iable. Hence, we consider only link failures under all
reliable nodes of network. Owing to the asynchron-
ous nature of the network, a node cannot distinguish
between a slow link and a faulty link. Hence, the
nodes cannot detect the faulty links. It means that
the link delays are unbounded and unpredictable, and
a link will not change the contents of a message at
any rates. This type of fault is called intermittent
[1][4]. If two adjacent nodes wish to communicate,
then they send messages to each other on the link
connecting them. If two nonadjacent nodes separated
by a faulty link want to communicate, then they
have to communicate through nodes adjacent to both
of them.

In this paper, we prove the lower bound of mes-
sage complexity in asynchronous complete networks
with intermittent faulty links. Let n be the number
of nodes in the network and f be the maximum
number of faulty links incident on each node, where
f=(n-1)/2]. Therefore, asynchronous intermittent
faulty links in a complete network are up to nllf2[4].

Because the asynchronous complete network with
intermittent faults is so complicated, it is difficult to
prove the exact lower bound of message complexity
for electing a leader. In general, electing a leader,
finding the maximum identifier and constructing a

spanning tree belong to the same class in the dis-

tributed algorithms[5]. Hence, they have the same
order of the message complexity. We use a spann-

ing tree to prove the lower bound of message com~
plexity in an asynchronous complete network with
intermittent link faults.

The complete network is considered as an undi-
rected graph G=(P, L), where P is a finite set of
nodes (| P|=n) and L is a set of links connecting
two adjacent nodes, and we assume that the graph
G is connected. We refer to election algorithm for a
complete network as algorithm executing on the
underlying graph. To prove the lower bound we
count the edges which carry messages during per-
formances of algorithms instead of the actual num-
ber of messages communicated by each edge as in
[5]. In this paper, we prove that the lower bound of
message complexity in an asynchronous complete
network with intermittent faults is O(r°).

Many researchers have proposed several synch-
ronous and asynchronous election algorithms for
networks that have religble nodes and links. In
particular, Gafnif6] proposed an asynchronous elec-
tion algorithm for general networks that uses 6(m
+ nlogn) messages, where m is total number of
links in the network. For the case of asynchronous
complete networks, Afek and Gafni[7], and Korach,
Moran and Zaks[5] showed distributed algorithms of
& (nlogn) message complexity.

Several election algorithms have been presented
for networks with faulty links. Cimet and Kumar[§8]
proposed an algorithm when communication links fail
detectably with fail-stop mode. Goldreich and Shrira
[9] presented an election algorithm in asynchronous
rings with one intermittently faulty link. If n is
already known to all the nodes, then their algorithm
uses @ (nlogn) messages; otherwise, 0(n’) messa-
ges. Abu-Amara[l] has studied an algorithm for
election in asynchronous complete networks that
uses minimally O(nftnlogn) messages, with f<
n/2-3}. In his paper, f is the maximum total num-
ber of intermittently faulty links in the network.
Abu-Amara and Lokre[4] have, in advance, develop-

SN D0 s 2T WERZM MA L1e

ed a distributed election algorithm in asynchronous

complete networks that uses OXri’ + nf) messages.

In their algorithm, each node has at most f faulty .

links incident on it, where f<|(n-1)/2}. Therefore,
their algorithm introduces the tolerance up to nlf/2
faulty links in the network. We use above men-
tioned network proposed by Abu-amara and Lokre,
and prove the lower bound message complexity is
O(r’) using spanning trees.

2. Model

Our model follows Goldreich and Shrira’s model
[9]. Consider an asynchronous complete network of
n processors. We model the network as a complete
graph on n nodes, in which each node represents a
processor, and each link represents a bidirectional
communication channel. Henceforth, we will not dis-
tinguish between a node and the processor it rep-
resents, and we will not distinguish between a link
and the channel it represents. Each node u has a
unique identifier, ID(u), chosen from a totally order-
ed set. No node initially knows the identifier of any
other node, but the nodes know that the network is
complete. When a node u wishes to communicate
with a node v, then u sends a message to v on the
link l(u,v) joining them. We assume that each mes—
sage consists of at most (log | T'|) bits, where |T|
is the cardinality of the set of node identifiers.

A distributed algorithm on the network is a set
of n deterministic local programs, each assigned to a
node. Each local program consists of computation
statements and communication statements. The
computation statements control the internal compu-
tation of a node. The communication statements are
of the form “send message M on link " or “receive
message M’ on link {”. Each node u has a Send-
Buffer(u,l) and a Receive~Buffer(u,!) associated with
each link / incident on u, where the buffer is not
necessarily first-in first-out. Let [be Ku,v). When u
wishes to send message M on [, u places M in
Send-Buffer(w.l). We call this event a send event.

W
o
40
ro
=
Pt
>
I
it
H
o
AT
ro
>
N
&
(A
=

To capture the asynchronous nature of our network,
messages may remain in the send-buffers for
arbitrary lengths of time. A transmission event in [
occurs when [places M in Receive-Buffer(v,/). We
assume that u cannot inspect Send-Buffer(u,l) to
check whether M was removed from the buffer.
Hence, M is in transit from u to v if M is in
Send-Buffer(u,). If u wishes to process a message
M’ from Receive-Buffer(u,l). We call this event a
receive event. For convenience, we assume that it
takes one time unit to remove M' from Receive
-Buffer(i,/) and to execute the computation state—
ments on M'. If M' is not in Receive-Buffer(y,/),
then u either waits for M’, or receives some other
message, depending on u’s local program. Note that
when we say that node u receives a message, we
mean that u removes the message from a Receive
—Buffer and processes the message. A loss event in
a link [is the event of | discarding a message.

A link is faulty during or before a particular
execution of the algorithm if / experiences at least
one loss event in the execution of the algorithm.
Links may fail intermittently at any time during the
execution of the algorithm. If a link / is not faulty,
then it is reliable. A reliable link is a link that
never loses messages. Recall that each node is
adjacent to at most f faulty links. Therefore, if [is
faulty, and ! connects nodes u and v, both u and v
can be adjacent to at most f - I faulty links in
addition to a faulty link /.

All the nodes in the network are reliable. It is
not necessary for all nodes to start the execution of
the algorithm simultaneously; some node may be
initially asleep. We assume that, if a dormant node
receives a message from some other node, then it
wakes up and processes the received message. The
processing time at each node is assumed to be
negligible compared with link delays. There may be
two statuses of a node during execution of the
algorithm, live or dead. Initially, all the nodes are
live. If a node u finds that there is a larger ID(v)
than ID(u) at some time ¢, then u is dead at t. A

2850 St=Z=EMcias =2X MHE MN=081

dead node cannot participate in the competition for
the leader. However, a dead node may send messa-
ges to some nodes after receiving messages from
other nodes. If there is only one live node, a unique
node is elected as a leader of the network.

Consider a particular execution E of a distributed
computing. Let Events(E) be the multiset of the
events in £. For convenience, we assume the exi-
stence of a global clock that gives the time at
which each event in E occurs. Although this clock
is available to an observer of the network, the nodes
do not know of its existence. We will assume that
each event in E occurs at some discrete unit of
time starting from zero. Let Events(u) be the mul-
tiset of u's send and receive events in E. The local
program in u induces a total ordering on Events(u).
Two events, each in a distinct node, may occur at
the same time. However, two events cannot occur at
the same time in the same node.

In this paper, we follows Korach, Moran and
Zaks's definitions[5] to prove the lower bound of
message complexity. The communication network is
viewed as an undirected graph G=(P, L) with |P|=
n, and we assume that the graph G is connected.
We refer to an algorithm for a given network as
the algorithm on the underlying graph.

E is acting on a graph G=(P, L). With each
execution we can associate a sequence SEND-=
<send), sends, .., sendy> that includes all the events
in their order of occurrence. We identify each event
send; with the 4-tuple (porgn(sendy), prnwardsends),
l(send;), my), where ponra(send;) is the node sen-
ding the forward message m; originated by porigin
(send;) on the link I(send;). If the two live nodes
communicate each other directly, we represent the
event such as (Duigin(sendy), ¢, I send;),m;). send; occurr-
ed at time ¢, where t; > &, for i > 1.

Let SEND(t) be the prefix of length t of the
sequence SEND, namely SEND(t)= <sendi, ..., send;
> If t < t' then we say that SEND(t’) is an
extension of SEND(t),and we denote SEND(t) <
SENIXt'). SEND is called a completion of SEND(t).

Let NEW=NEW{(SEND) be the subsequence
<new,, news, .., new-> of the sequence SEND that
consists of all the events in SEND that use
previously unused links. A link is used if a message
has already been sent along it from either side. This
means that the message sendi=(porigin(sendi), Dfonvard
(send;), l(send;), m;) belongs to NEW if and only if
l(send;) =l(send;) for all j < i. NEW(t) denotes the
prefix of size t of the sequence NEW. Define the
graph GINEW(t))=(P, LINEW(t))), where LINEW(t))
is the set of links used in NEW{t), and call it the
graph induced by the sequence NEW(t). The link
complexity {E) of E acting on a graph G is the
maximal length of a sequence NEW over all exe-
cutions. The message complexity m(E) if E acting
on a graph ¢ is the maximal length of a sequence
SEND over all executions. It is clear that m(E)=>
IE).

3. The lower bound

Before proving the lower bound in our model, we
show that it is impossible for the lower bound to be
o).

Claim 1. Why does a dead node send forward
messages?

We choose arbitrarily two live nodes, pi and p;, i
< J. At first, the node { ‘sends messages to all
neighbors. If it receives l(n-1)/2] successful replies
from other nodes which have smaller ID than ID(i),
the node will be a candidate for a leader, and all
nodes that sent successful replies to node i are
dead. Next, the node j also sends messages to all
its neighbors. Eventually it enters candidate state
like the node i. In the worst case, we assume the
status of all links is unchanged. If there are n live
nodes, there can be (L(n-1)/21+1) candidate state
nodes at most. Due to the unchanged status of all
links, the algorithm cannot elect the leader. It means
the network is in deadlock. Therefore, when dead

HEH D0 e 2T UERIOAM M LTRIESE S BIANX 2Tl W2 Al 2859

nodes that werc already visited by several nodes
receive messages from the largest ID node ever
visited, these dead nodes have to send forward
messages to the visited nodes to compete live nodes

each other. -

Claim 2. Why is not the lower bound of message
complexity O{r’)?

We assume there are n processors, p; < pz <
+++ < pp We define that the suppressor is the
largest ID node that ever visited to the arbitrary
dead node. When a dead node receives a message
from the largest 1D node visited on it, if that node
sends a forward message only to his suppressor, the
lower bound of message complexity is O(r’). For
example, we assume p; is dead and ps, ps and ps
are live nodes. Eventually node pz and ps; will be
dead, sometimes through the dead node p;, and ps
will recognize the status of ps However, ps cannot
know the status of pe. Therefore, we sce that O(n°)

is not sufficient to elect a leader in our model.”

We show above that it needs forward messages
and the lower bound of message complexity may be
larger than X7’} in an asynchronous complete
network with intermittent faults. From now on, let
us prove the lower bound. We assume that there
are n identical nodes in the complete asynchronous
networks with maximally (n/2) [(n-1)/2] intermittent
faulty links. These identical nodes but different
identifier are pr < pz <+-+ < p. Under this model,
we look at the link complexity in the worst case.
Initially all nodes are in live state and start a
distributed algorithm separately.

To be the worst case, the smallest ID node is
dead at first, and the second smallest /D node is
dead next, finally there is one live node, the largest
ID node, because of eliminating the smallest /D node
in the live nodes one-by-one. When the smallest
ID(p;) competes one another node except the second
smallest ID(p2), p; will be dead. This situation has

a fewer number of messages than the case that’ p»
is the suppressor of p;. For example, when ps is the
suppressor of p;, since pz cannot construct a spann-
ing tree, p; is dead by ps and pz is dead by ps to
get more link complekity.

We let n be Zk + 1. We consider that k is the
maximum number of faulty links. After the k smal-
lest ID nodes are dead, pv.; node has k son nodes.
The ilive riodes can compete each other through their
sons. If a node is dead, then it has to inform that
its status is changed. Also the sons of the dead
node must send the result to their new suppressor.
At this time, the dead node and its sons commu-
nicate through new links.

Therefore, the maximum number of link comple-
Xity to construct a spanning tree is as followings;

(1) All nodes broadcast when the distributed algo-
rithm starts. At first each node which has n-1
incident links acts as a root of a spanning tree.
The order of message complexity is O().

(2) The dead nodes send forward messages to
construct a spanning tree. We assume that p;
.02, D3, ... is dead respectively. When p; is dead
by po, there is no forward messages. After that,
when the dead node p; receives a message
originated from the live node ps; it sends a
forward message to the. live node pz to compete
both pz and ps. p2 would be dead by ps Next,
the messages originated from ps are arrived at
the dead nodes, p; and pz. pr sends the forward
messages to pz and ps and pr sends the forward
message to ps. Eventually p. will remain as an
only live node.

T (1+2)4(1+2+8)+ - +(1+2+3+--
(k=204 (1+2+3+ - +(k-2)+(k-1))+
(142434 +(k=-2)+ (k- 1)+k)+(1+2+3
toeee + (k-2)+(k-1)+k)+(2+3+4+ - +
(k-1)+k+ 1))+ 4 (k+ o+ (k+(k-2))
+(k+(k-1))

= (1/6)0(Tk> - k) = O(n’).

2860 StxEEMeIstgl =EA M5E M11=0811)

(3) When one node is dead, this node informs of its
sons to change their suppressor.
142+ +(n-2) = O(n’),
Therefore, totally link complexity (E) = n(n - 1)
w0’ + o).

We conclude that the lower bound of message
complexity 1s O(n'?), for a leader election algorithm
in an asynchronous complete network with inter—

mittent link faults using a spanning tree.

4. Conclusion

Election is the problem of choosing a unique
processor as the leader of a network of processors.
No node knows the identifier of any other node at
first phase. The network cannot thus elect a pre-
determined leader. The processors do not have shar-
ed memory and can communicate with each other
only by sending messages to each other on the com-
munication links connecting them. We consider elec-
tion algorithm in an asynchronous complete of n
identical nodes except that each node has its own
unique identifier from a totally ordered set. Hence, a
node cannot distinguish between a slow link and a
faulty link because of the asynchronous nature of
the network. We call this type of link failues the
intermittent fault. Let f be the maximum number of
faulty links incident on each node, where f<|(n-1)/2}.
Thus asynchronous intermittent faulty links in a
complete network are up to nf/2. In this paper,
after showing that it is impossible for the lower
bound to be O(r’) we proved that the lower bound
of message complexity in an asynchronous complete
network with intermittent link failures is O(r’), using

a spanning tree.

References

[1] H H. Abu-Amara, “Fault-tolerant distributed
algorithm for election in complete networks,”
IEEE Transactions on Computers, Vol.37, pp.

449-453, April 1988.

[21 D._A. Menasce, G.J.Popek,-and—R-— R Muntz,

"A locking protocol for resource coordination in
distributed databases,” ACM Tran. Database
Syst., Vol.5, pp.103-138, June 1980.

[3] M. J. Fischer, N. A. Lynch, and M. S. Paterson,
"Impossibility of distributed consensus with one
faulty process,” J. Ass. Comput Mach, Vol.32,
pp.374-382, April 1985.

4l H H Abu-Amara and J]. Lokre, "Election in
complete asynchronous networks with inter-
mittent link failures,” IFEE Transactions on
Computers, Vol.43, pp.778-788, July 1994.

[5] E. Korach, S. Moran, and S. Zaks, "Tight lower
and upper bounds for some distributed algo-
rithms for a complete network of processors,”
Proc. 3rd ACM Symp. Principles Distributed
Comput., Vancouver, B.C., Canada, pp.199-207,
Aug. 1984.

[6] E. Gafni, "Improvements in the complexity of
two message-optimal election algorithms,” Proc.
4th ACM Symp. Principles Distributed Com-
put, Minacki, Ont., Canada, pp.175-185, Aug.
1985.

[71 Y. Afek and E. Gafni, "Time and message
bounds for election in synchronous and asynch-
ronous complete networks,” Proc 4th ACM
Symp. Principles Distributed Comput., Minacki,
Ont., Canada, pp.186-195, Aug. 1985.

[8] A. Cimet and P. R. S. Kumar, "A resilient dis-
tributed protocol for network synchronization,”
ACM SIGCOMM Symp. Commun Arch Pro-
tocols, Stowe, VT, pp.358-367, Aug. 1986.

[9] Goldreich and L. Shrira, "The effect of link
failures on computations in asynchronous rings,”
Proc. 5th Symp. Principles Distributed Comput.,
Calgary, Alta., Canada, pp.174-185, Aug. 1986.

2 DWO| UE UM HEIINM M LTEIES 9

sdkim@halla.sec.samsung.co.kr

1983¢ AEdigte AxEEH £
A(F 8}

1990 A&t dzbgsts £
A(F AN

19964 = €Ak~ AGM tiEta
AZT A E9(FHAD

19833 39~ 19884 99 FIHAENATL THA
A7 AFY

1996 79~ 8A AAAAT AN AFEADE 5
4a79

FAPo: AR T2, AFEUEAT, ¥ % ¥

A9

ot AL 2EZY %2

A 2861

