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Performance Analysis of Parallel Database Machine
Architectures

Yong Kyu Lee!

ABSTRACT

The parallel database machine approach is currently widely and successfully used. There are four major
architectures which are used in this approach: shared-nothing architecture, shared-everything architecture, shared-disk
architecture, and hybrid architecture. In this paper, we use an analytical model to evaluate the performance of these
database machine architectures. We define an abstract model for cach type of database machine design to obtain
performance equations describing the execution times with respect to the hybrid hash join operation. Using the

performance equations, we evaluate the execution times of the various database machine design models.

1. Introduction They designed special-purpose database
machines. such as intelligent secondary storage

One of the problems that conventional devices and database filters. The intelligent
database management systems fdce is the 1/0O secondary  storage device ~was  specially
bottleneck. caused by slow disk access time designed to eliminate the limitations of the
conventional secondary devices, and the

with
Initially. database machine designers tried- to

respect to main memory access time.

solve this problein by reducing the amount of
data to be moved through the 1/O channel.
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database filter achieved the same filtering
effect by using an intelligent secondary storage
[22]. their
failed due to a poor performance/cost ratio

controller efforts have

However.
compared to the software solution that uses
conventional processors, and disks

(8. 24, 25].

memories,
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A general solution to the /O bottleneck is
to increase the I/0 bandwidth by exploiting
parallelism [25). The parallel database
machine approach. which uses a large number
of smaller machines. is currently widely and
successfully used. There are two main reasons
for the dominance of the parallel database
machines. One is the remarkable progress of
the multiprocessor technology which made it
possible to build high-performance database
systems at a much lower price than equivalent
mainframe computers. And the other is the
widespread use of the relational data model
which is well suited to parallel execution.
There are four major architectures which are
used in the parallel database machine
approach: shared-nothing architecture. shared-
everything architecture, shared-disk archi-
tecture, and hybrid architecture. It seems that
the shared-nothing architecture attracts many
database designers, but there are still many
open problems and issues to be solved before
deciding which architecture is best for
database machines [16. 24, 25). Among them,
one important issue is to know which one
shows  better performance  in various
conditions.

There have been a number of efforts to
analyze the performance of different database
machine architectures. In (10, 22]), analytical
models have been used to evaluate the per-
formance of various database machine archi-
tectures. In [3. 4], simulation models have
been used to compare the performance of
parallel database machine architectures in
transaction processing. These studies, however,
have not fully reflected the current trends of
database machine design.

In this paper. we use an analytical model to
evaluate four parallel database machine archi-
tectures. We classify presently available data-
base machines into these four classes. and

define an abstract model representing each
class. Using performance equations, we analyze
the performance of each model with respect to

the relational join operation.

2. Parallel Database Machine Archi-
tectures

2.1 Shared-Nothing Architecture

In the shared-nothing architecture (Fig.1),
each processor has a portion of the database
and only that portion can be directly accessed
by the processor. Processors communicate with
one another only by sending messages via a
high speed interconnection network. There are
no shared storage devices in this architecture.
Examples of the shared-nothing parallel data-
base machine architecture include Teradata’s
DBC/1012 (6]. Tandem’'s NonStop SQL (23],
Gamma (7). Bubba [5). EDS (1).and Arbre
(14).

r interconnection Network T

Processor

(Fig.1) Shared-Nothing Architecture

2.2 Shared-Everything Architecture

In this model (Fig.2), processors share main
memory as well as disks through a high speed
interconnection network. Examples of the sha
-red-everything database machine architecture
include XPRS [21), Volcano (9), Symmetry S81
{12}, and DBS3 (2).
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2.3 Shared-Disk Architecture

In the shared-disk architecture (Fig.3). all
the disks containing the databases are shared
among the different processors, and each
processor has its own exclusive memory.
Examples of the shared-disk parallel database
systems are IMS/VS (20). Amoeba [(19].
ORACLE on VAXcluster [13). and TPF (17).

Processor rocessor Processor,

i

Memory Memory Memory

i
- D

Interconnection Network

i Hi}

-

(Fig.3) Shared-Disk Architecture

24 Hybrid Architecture

In the hybrid architecture (Fig.4). each shar
ed memory unit consists of a small number of
shared-everything processors. However. the wh
ole system may adopt shared-nothing architect
ure or shared-disk architecture. Examples of
this architecture are SDC (11), P-90 (6], and
NCR 3700 (26).
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3. Performance Analysis

In this section, we describe an abstract
model for each database machine architecture
which will be used to analyze performance. We
also include an abstract model representing
conventional single processor systems since
many database systems are still running on
conventional systems. Based on the model, we
have obtained performance equations using the
notations similar to those in (22).

3.1 Abstract Models

3.1.1 Conventional System Model

This model has a processor, a main memory,
and a disk. We have assumed that this model
supports compiled user queries and sophi-
sticated query execution strategies for rela-
tional operations. This model will also be used
as a host computer in the definition of other
database machine models. Throughout this
paper. we have made the following assump-
tions:

® There are no special-purpose hardwares
for database operations such as sotrting
devices and joining devices.

® Kach relation does not fit entirely in the
main memory of a processor.

* The pages of a relation are stored in
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consecutive disk tracks.

¢ The processor execution time and the
disk access time are not overlapped.

e When the result of an operation is
generated, it is consumed immediately by
the user application program.

e Each track is the same size as a page.

e The basic processing and moving unit is
page.

® There is no cache memory.

3.1.2 Shared-Nothing Architecture Modetl

In the shared-nothing architecture, each
processor has its own exclusive memory and
secondary storage device. The processors can
communicate with one another only by sending
messages through the interconnection network.
Additionally. we have assumed the following
characteristics of this model:

e The processors are conventional Von

Neumann  processors  with  identical
capabilities.

e The front-end host computer issues
database commands and collects the
results from the back-end database
machine.

¢ Each relation is horizontally and evenly
partitioned in the secondary storage
devices.

* The interconnection network provides
broadcasting capability.

® There is no contention on shared resour

—ces.

These assumptions are applied to other
database machine models as well as the
shared-nothing model.

3.1.3 Shared-Everything Architecture Model
In the shared-everything architecture, all
memoty modules and disks are shared by the

processors. We added the following assump-
tions to this model:
(]

¢ The main memory consists of a number of
memory modules, and the different
modules can be accessed simultaneously
by more than one processor.

e The disk consists of a number of disk
drives, and the different drives can be
accessed simultaneously.

* The operation of the entire system is
controlled by one operating system.

e A global concurrency control mechanism
for the shared memory and disk is
provided.

® The host computer can access the shared

memory.

3.1.4 Shared-Disk Architecture Model

In the shared-disk architecture. each pro-
cessor has its own exclusive memory. but each
processor can directly access any disk. The
following assumptions are added to this model:

¢ The disk consists of a number of disk
drives, and the different drives can be
accessed simultaneously.

e A global concurrency control mechanism
for the shared disk is provided.

3.1.5 Hybrid Architecture Model

We have assumed that the hybrid archi-
tecture model is hybrid of the shared-nothing
architecture and the shared-everything archi-
tecture. That 1is, the overall architecture
adopts the shared-nothing architecture, but
each node (shared-memory node) adopts the
shared-everything architecture. We added the
following assumptions to this model:

e All the shared-memory nodes have iden-
tical capabilities.



¢ The main memory in a node consists of a
number of memory modules. and the
different modules can be accessed
simultaneously by more than one
Processor.

* The disk in each unit consists of a
number of disk drives. and the different
drives can be accessed simultaneously.

* In each node, the operation of the system
is controlled by one operating system.

¢ A global concurrency control mechanism
for the shared memory and disk is
provided in each node.

3.2 Join Operation

We use the hybrid hash join operation to
evaluate the performance of database machine
architectures. The hybrid hash join algorithm
for a multiprocessor environment is described
in (18]. The parallel algorithm for the equijoin
of two relations K and S is as follows.

Initially. both relations R and S are hori-
zontally and evenly distributed among the pro-
cessors. Suppose there are f processors in the
system. To perform the hybrid hash join. each
processor executes the following steps in

parallel:

1. Each processor scans its fragment of K.
As each tuple is processed, the processor
computes a hash function #%;. This hash
value is used to determine to which
processor the tuple should be sent by a
lookup in a split table. The tuples of R
received at processor p, form the
partition R,.

2. As a processor p, receives an incoming
tuple of R, p, applies another hash
function ks, which determines to which

local hash bucket the tuple belongs. The
hybrid hash join algorithm keeps one

W HIOEION S BHE PEO MSEM 877

local hash bucket in memory. and spools
the rest to its local disk. An in—-memory
hash table is built out of the tuples that
fall into local bucket zero, for use in the
probing phase of the join.

. Each processor scans its fragment of S.

(s

As each tuple processed, the processor
com- putes the hash function #&; and
looks up this value in a split table to
determine which processor the tuple

should be sent.

4. When a processor p, receives an incoming
S tuple. it applies the hash function hy
to determine to which local bucket the
tuple belongs. If this local bucket is
bucket zero. p, immediately probes the
local bucket hash table for any matching

tuples: otherwise, the tuple is spooled to

disk into the appropriate local bucket of
S|.

. After S has been redistributed. the join

of the local bucket =zero has been

o

completed. Then each processor

repeatedly reads a local bucket of R,
into memory. then scans the
corresponding local bucket of S; to find

all joining tuples, until all local buckets
have been processed.

4. Performance Comparison

This section presents the performance
comparison of the database machine archi-
tecture models. The parameter values are
shown in {(Table 1).

In order to make the comparison fair, we
have assumed that all the database machine
models have the same number of processors,
memory modules, and disk drives.

Each model consists of 16 processors and 16
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{Table 1) Parameter Values

Parameter Value
CPU speed 4 MIPS
page network latency 5.6 ms

10 instructions
start an i/o 1000 instructions
disk page size 16 kilobytes

hash 20 instructions
initiate join 40000 instructions
write tuple into buffer | 100 instructions

simple hash

disk drives. In the hybrid model._ there _are

four shared-memory nodes, each of which
consists of four processors and four disk
drives. The values for the processor, disk, and
network parameters are based on the
measurements  from  the Intel iPSC/2
Hypercube and Fujitsu Model M2266 (1 GB,
5.25") disk drive (15). The disk page size has
been modified to make the evaluation easy.
Other software parameters are based on
instruction counts taken from the Gamma
database machine (15]). Since we have assumed
that relations are evenly partitioned among
the disk drives, we have not considered
memory contention, disk contention, and net-
work contention in our evaluation.

Using the performance formulas, we have
quantified the hybrid hash join performance of
the wvarious database machine architecture
models through a number of different tests.
(Fig.5) presents the execution times for the
various relation sizes when the join selectivity
factor is 0.00001. We have assumed that the
bucket size is 100 disk pages. The shared-
everything architecture model shows the best
performance. The difference in the execution
times between the shared-everything model
and the other parallel database machine
architecture models is quite large. This
reflects the fact that there is no commu-
nication overhead during join processing in the
shared-everything model, while most of the

execution time is spent communicating between
processors in the other models. The hybrid
architecture model shows somewhat better
performance than the shared-nothing and
shared-disk  architecture models. This is
because the communication overhead is not
required within a shared-memory node in the
hybrid model, while the relations have to be
distributed among the processors through the
interconnection network during join processing

- in-the-shared-nothing-and shared-disk -models.

The shared-nothing model and shared-disk
model have the same execution times (same
curve). We have obtained similar results with
other join selectivity factors (0.0001, 0.001).

4.1 Comparison between Time Components

We compare the execution times between
major time components to process the hybrid
hash join operation when the join selectivity
factor is 0.0001. In each model, the execution
time consists of three major time components:
CPU time, disk access time, communication
time through the interconnection network.
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(Fig.5) Join Execution Times: Selectivity Factor =
0.00001
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(Fig.6) Single-Processor: Join Selectivity Factor = 0.0001

(Fig.6) presents the execution times of the
major time components in the conventional
single-processor model. Since the communi-
cation time is not required in this model, the
execution time for the join operation consists
of two time components: CPU time and disk
access time. In this model. the disk access
time accounts for the greater portion of the
join execution times. This shows that most of
the execution time is spent accessing the disk
during the bucket partitioning and joining
phase. When the size of each participating
relation is 1000 pages (16 megabytes). the disk
access time accounts for 96.09 % of the total
execution time. As the relation size grows, the
portion of the disk access time somewhat
decreases. The disk access time occupies 95.30
% of the execution time when the relation size
is 10000 pages (160 megabytes). When the join
selectivity factor is 0.001 and the relation size
is 10000 pages, the disk access time accounts
for 87.79 % of the total execution time.

When the size of each participating relation
is 1000 pages. 82.55 % of the total time is
used for the communication. while 15.59 % is
used for the disk access. As the relation size
grows. the portion of the communication time
decreases. When the relation size is 10000
pages. the communication time accounts for
72.58 % of the execution time.

w2 HOIEHI0I HREf XY YA 879

In the shared-evervthing model. there is no
communication overhead during join proce-
ssing. Thus. the execution time consists of two
major time components: CPU time and disk
access time. The time components of this
model are presented in (Fig.8). When the size
of each participating relation is 1000 pages.
the disk access time accounts for 85.85 % of
the total execution time. The percentage of the
disk access time decreases to 80.10 % when
the relation size grows to 10000 pages. Since
this model does not suffer from communication
overhead, it outperforms all the other models.

The execution times of the major time
components in the shared-disk model are the
same as those of the shared—nothing model.

In the hybrid model, most of the time to
process the join operation is spent communi-
cating between processors like the shared
-nothing and shared-disk models. The results
in (Fig.9) are similar to what was seen in
(Fig.7). HMowever. the hybrid model shows
somewhat better response times. When the size
of each relation is 1000 pages, the
communication time accounts for 79.68 % of
the total execution time. The portion of the
communication time increases as the relation
size grows. The percentage of  the
communication time decreases to 69.62 % when

the relation size is 10000 pages.
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(Fig.7) Shared-Nothing: Join Selectivity Factor = 0.0001
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In the parallel architecture models, the disk
access times for the join operation are the
same for all the models. The CPU processing
times are almost same for all the models. It is
the network communication time that makes
the response times of a model different from
the other models. This fact is illustrated in
(Fig.10). It shows the CPU time and disk
access time to process the hybrid hash join
database machine

operation in the parallel

models when the join selectivity factor is
0.0001. It also

communication

the network
times of  the hybrid,
and shared-disk model. The
network communication time accounts for the

presents

shared-nothing.

larger portion of the join execution times in
the shared-nothing and shared-disk models.
The network times of the shared-nothing and

shared-disk model are the same.
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(Fig.10) Time Components of the Parallel Models:Join
Selectivity Factor =0.0001

5. Conclusions

We have used an analytical model in order
to compare the performance of parallel data-
base machine architectures. We have classified
presently available database machine designs
into four generic classes: shared-nothing
shared-everything architecture,
and hybrid archi-

tecture. An abstract model has been defined to

architecture,
shared-disk architecture.

represent each class of database machine
designs.
Using the performance equations., we have

evaluated the execution times of the hybrid
hash join for the parallel database machine
models. In our evaluation, we have assumed
that each model consists of 16 processors. In
the experiments, the shared-everything model
has shown the best performance. since it does
not require the communication overhead bet-
ween processors. This result is the same as
what is described in (4). The hybrid model has
shown somewhat better response times than
the shared-nothing and shared-disk models in
join processing. This implies that the hybrid of
the shared-nothing and shared-everything
architectures can be considered as an alter-

native database machine design.



We have analyzed the execution times of the
major time components to process ;,th‘e hybrid
hash join operation. In each model, the exe-
cution time of a join operation consists of
three major time components: CPU time, disk
access time. and network comminication time.
In the parallel architecture mddélév the CPU
time and disk access time for the join
operation are almost same for all the models.
It is the network communication time that
makes the response times of a model different
models.  The
communication time accounts for the greater

from the other network
portion of the join execution times in the
shared-nothing and shared-disk models.
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