BCK-ALGEBRAS OF EXTENDED POGROUPOID

CHANG KYU HUR AND HEE SIK KIM

ABSTRACT. In this paper we construct a BCK-algebra $(X^*; *, w)$ from the extended pogroupoid (X^*, \cdot) , and obtain a necessary and sufficient condition for the algebraic system $(X^*; *, \cdot, w)$ to have a property $(x \cdot y) * z = (x * z) \cdot (y * z)$ for all $x, y, z \in X^*$.

1. Introduction

BCK-algebras and BCI-algebras were introduced by K. Iséki and Y. Imai in 1966 ([1, 2, 3, 5]), and then many authors have investigated various properties of these algebras. It is known that the class of BCKalgebras is a proper subclass of the class of BCI-algebras. On the while, J. Neggers ([6]) introduced the notion of pogroupoid, and J. Neggers and H. S. Kim ([8]) obtained a necessary and sufficient condition that a pogroupoid is to be a semigroup. Moreover, in [9] they investigated a class of algebras whose bases over field K are pogroupoid, and discussed several properties of these algebras as they relate to the structure of their associated pogroupoids and through these to the associated posets also. Given a pogroupoid (X,\cdot) we define an extended pogroupoid (X^*,\cdot) by adding $w \notin X$ with the condition $w \cdot a = w = a \cdot w$ for any $a \in X \cup \{w\}$. In this paper we construct a BCK-algebra $(X^*; *, w)$ from the extended pogroupoid (X^*, \cdot) , and obtain a necessary and sufficient condition for the algebraic system $(X^*; *, \cdot, w)$ to have a property $(x \cdot$ $(y) * z = (x * z) \cdot (y * z)$ for all $(x, y, z) \in X^*$.

Received April 25, 1997. Revised October 25, 1997.

¹⁹⁹¹ Mathematics Subject Classification: 06F35, 20N02.

Key words and phrases: BCK-algebras, (extended) pogroupoid, $(C_2 + \underline{1})$ -free, poset.

2. Extended pogroupoid

A groupoid (X,\cdot) is called a pogroupoid if (i) $x\cdot y\in\{x,y\}$ (ii) $x\cdot (y\cdot x)=y\cdot x$ (iii) $(x\cdot y)\cdot (y\cdot z)=(x\cdot y)\cdot z$ for all $x,y,z\in X$ ([6]). J. Neggers [6] defined an associated partially ordered set (X,\leq) by $x\leq y$ iff $y\cdot x=y$. On the one hand, for a given poset (X,\leq) he also defined a binary operation on X by $y\cdot x=y$ if $x\leq y, y\cdot x=x$ otherwise, and proved that (X,\cdot) is a pogroupoid. Let (X,\cdot) be a pogroupoid and let $w\not\in X$. Define $w\cdot a=a\cdot w=w$ for all $a\in X^*:=X\cup\{w\}$. Then (X^*,\cdot) is a pogroupoid, called the extended pogroupoid of (X,\cdot) . Define a partial order \leq on X^* by $x\leq y$ iff $y\cdot x=y$. Then (X^*,\leq) is a poset, called the associated poset with respect to (X^*,\cdot) .

PROPOSITION 2.1. Let (X, \cdot) be a pogroupoid and let $(X^* := X \cup \{w\}, \cdot)$ be the extended pogroupoid of X. Then w is the greatest element of the associated poset (X^*, \leq) .

Proof. Since $w \cdot a = w$ for any $a \in X^*$, we have $a \leq w$. This means that w is the greatest element of X^* .

EXAMPLE 2.2. Let $X = \{a, b, c, d\}$ be a pogroupoid with the left table below:

·	a	b	C	d
a	a	b	c	d
b	a	b	c	d
c	c	c	c	d
d	a	d	c	d

•	a	b	c	d	w
a	a	b	c	d	w
b	a	b	c	d	w
c	c	c	c	d	w
d	a	d	c	d	w
w	w	w	w	w	w

Then its extended pogroupoid (X^*, \cdot) is described as in the right table above. The associated poset (X^*, \leq) has w as the greatest element, and can be represented as follows:

BCK-algebras of extended pogroupoid

3. BCK-algebra of (X^*, \cdot)

Let X be a set with a binary operation '*' and a constant 0. Then (X; *, 0) is called a BCK-algebra if it satisfies the following conditions: (I) ((x*y)*(x*z))*(z*y)=0, (II) (x*(x*y))*y=0, (III) x*x=0, (IV) x*y=0 and y*x=0 imply x=y, (V) 0*x=0, for all $x,y,z\in X$. We construct a BCK-algebra $(X^*; *, w)$ from the extended pogroupoid (X^*, \cdot) motivated from S. Tanaka ([10]).

THEOREM 3.1. Let $(X^* := X \cup \{w\}, \cdot)$ be the extended pogroupoid of a pogroupoid (X, \cdot) . Define

$$x * y := \begin{cases} w & \text{if } x \cdot y = x, \\ x & \text{otherwise.} \end{cases}$$

Then $(X^*; *, w)$ is a BCK-algebra.

Proof. (III). For any $x \in X^*$, $x \cdot x = x$ implies x * x = w. (IV). If x * y = w and y * x = w, then $x \cdot y = x$ and $y \cdot x = y$, and hence $x = x \cdot y = x \cdot (y \cdot x) = y \cdot x = y$. (V). Since $w \cdot x = w$ for any $x \in X^*$, w * x = w. Note that x * w = x, since $x \cdot w = w$ for any $x \in X^*$. (I). We have two cases: (a) $x \cdot y = x$, (b) $x \cdot y = y$. If $x \cdot y = x$, then x * y = w. Hence by applying (V) we have ((x * y) * (x * z)) * (z * y) = (w * (x * z)) * (z * y) = w. If $x \cdot y = y$, then x * y = x. We consider two subcases: (b₁) $x \cdot z = z$, (b₂) $x \cdot z = x$. If $x \cdot z = z$, then x * z = x, and hence ((x * y) * (x * z)) * (z * y) = (x * x) * (z * y) = w * (x * y) = w. If $x \cdot z = x$, then x * z = w. We claim that $z \cdot y = y$. Assume that $z \cdot y = z$. Then $x \cdot y = (x \cdot z) \cdot y = (x \cdot z) \cdot (z \cdot y) = x \cdot z = x$, a contradiction. Thus we have z * y = z. Therefore ((x * y) * (x * z)) * (z * y) = (x * w) * z = x * z = w, which proves (I). Finally we consider (II). If $x \cdot y = x$, then x * y = w and (x * (x * y)) * y = (x * w) * y = x * y = w. If $x \cdot y = y$, then x * y = x and $x \cdot y = y$.

Chang Kyu Hur and Hee Sik Kim

and
$$(x*(x*y))*y = (x*x)*y = w*y = w$$
. This proves (II). Hence $(X^*; *, w)$ is a BCK -algebra.

In Theorem 3.1 above we say $(X^*;*,w)$ the BCK-algebra associated with the extended pogroupoid (X^*,\cdot) . H. Yutani [11] proved that a BCK-algebra (X;*,0) having a binary operation "·" on X with $(x*y)*z=x*(y\cdot z), \, \forall x,y,z\in X$ is with condition (S). With this notion J. Meng [4] proved that implicative commutative semigroups are equivalent to BCK-algebras with condition (S). We consider some relations between the BCK-operation "*" and the pogroupoid operation "·".

PROPOSITION 3.2. If $(X^*; *, w)$ is a BCK-algebra associated with the extended pogroupoid (X^*, \cdot) , then $(y \cdot x) * x = w$, $\forall x, y \in X^*$.

Proof. If
$$y \cdot x = y$$
, then $y * x = w$ and $(y \cdot x) * x = y * x = w$. If $y \cdot x = x$, then $(y \cdot x) * x = x * x = w$. This proves the proposition. \square

Let (X, \leq) be a poset and $S \subseteq X$. A poset whose underlying set is S and whose poset structure is that inherited from (X, \leq) is called a full subposet of X ([7]). Given a poset (X, \leq) it is Q-free if there is no full subposet (P, \leq) of (X, \leq) which is order isomorphic to the poset (Q, \leq) . If C_n denotes a chain of length n and if n denotes an antichain of cardinal number n, while n denotes the disjoint union of posets, then the poset $(C_2 + 1)$ (or $C_2 + C_1$) has Hasse diagram

and may be represented as $\{p \leq q, p \circ r, q \circ r\}$, where $a \circ b$ denotes the relation of not being comparable (i.e., $a \circ b$ iff $a \leq b$ and $b \leq a$ are both false).

THEOREM 3.3. Let (X^*, \leq) be a poset associated with the BCK-algebra $(X^*; *, w)$. Then (X^*, \leq) is $(C_2 + \underline{1})$ -free if and only if $(X^*; *, \cdot, w)$ has a property: $(x \cdot y) * z = (x * z) \cdot (y * z), \ \forall x, y, z \in X^*$.

Proof. (\Leftarrow) Assume that (X^*, \leq) is not $(C_2 + \underline{1})$ -free. Then (X^*, \leq) has a full subposet, say (x^*, \leq) \bullet y. This means that $(x \cdot y) * z = y * z = y \neq w = w \cdot y = (x * z) \cdot (y * z)$, a contradiction. (\Rightarrow) We consider 3 cases: (a) $y \leq x$ (b) $x \leq y$ (c) $x \circ y$. Case (a). $y \leq x$. Then $x \cdot y = x$ and x * y = w. If $x \geq z$, then x * z = w, and hence $(x \cdot y) * z = x * z = w$ and $(x * z) \cdot (y * z) = w \cdot (y * z) = w$. If $z \geq x$, then x * z = x. Since $z \geq x \geq y$, y * z = y. Hence $(x * z) \cdot (y * z) = x \cdot y = x = x * z = (x \cdot y) * z$. If $x \circ z$, then we may consider two subcases: (i) $y \leq z$ and (ii) $y \circ z$. Since (X^*, \leq) is $(C_2 + \underline{1})$ -free we need only to consider the subcase (i) $y \leq z$. It means that y * z = y. Hence $(x \cdot y) * z = x * z = x = x \cdot y = (x * z) \cdot (y * z)$. Case (b). Similar to the Case (a).

Case (c). $x \circ y$. Then $x \cdot y = y$ and x * y = x. We consider three subcases: (i) $\{x \circ y, x < z, y < z\}$, (ii) $\{x \circ y, z < x, z < y\}$ and (iii) $\{x \circ y, y \circ z, z \circ x\}$. If (i) holds, then $x \cdot y = y, y * z = y$ and x * z = x. Hence $(x \cdot y) * z = y = (x * z) \cdot (y * z)$. If (ii) holds, then $(x \cdot y) * z = y * z = w = (x * z) \cdot (y * z)$. If (iii) holds, then $x \cdot y = y, y * z = y$ and x * z = x. Hence $(x \cdot y) * z = y * z = y = x \cdot y = (x * z) \cdot (y * z)$. This proves the theorem.

EXAMPLE 3.4. In Example 2.2 (X^*, \leq) has a full subposet $\{c \leq a, c \circ d, a \circ d\}$, and so it is not $(C_2 + \underline{1})$ -free. Moreover, we can see that $(c \cdot d) * a = d * a = d$, while $(c * a) \cdot (d * a) = w \cdot d = w$.

REMARK. We may have another candidates for such laws described in Theorem 3.3 as follows:

$$(\delta_1) \quad (x*y) \cdot z = ((x \cdot z) * y) \cdot (y*(y*z)),$$

$$(\delta_2)$$
 $x \cdot (y * z) = ((x \cdot y) * z) \cdot (x * (x * z)),$

$$(\delta_3) \quad x * (y \cdot z) = (x * y) * z.$$

It will be interesting to obtain a necessary and sufficient conditions in poset structure or else for such conditions to be hold.

ACKNOWLEDGEMENT. The authors are deeply grateful to the refree for the valuable suggestions.

Chang Kyu Hur and Hee Sik Kim

References

- K. Iséki and S. Tanaka, Ideal theory of BCK-algebras, Math. Japon. 23 (1976), 352-366.
- [2] _____, An introduction to theory of BCK-algebras, Math. Japon. 23 (1978), 1-26.
- [3] K. Iséki, On BCI-algebras, Math. Seminar Notes 8 (1980), 125-130.
- [4] J. Meng, Implicative commutative semigroups are equivalent to a class of BCK-algebras, Semigroup Forum 50 (1995), 89-96.
- [5] J. Meng and Y. B. Jun, BCK-algebras, Kyung Moon Sa Co., Seoul, 1994.
- [6] J. Neggers, Partially ordered sets and groupoids, Kyungpook Math. J. 16 (1976), 7-20.
- [7] _____, Combinatorial symbols and finite posets, J. Comb., Inf. & Sys. Sci. 4 (1979), 309-342.
- [8] J. Neggers and H. S. Kim, *Modular semigroups and posets*, Semigroup Forum **53** (1996), 57-62.
- [9] _____, Algebras associated with posets, (submitted).
- [10] S. Tanaka, Examples of BCK-algebras, Math. Seminar Notes 3 (1975), 75-82.
- [11] H. Yutani, An axiom system for a BCK-algebra with condition (S), Math. Seminar Notes 7 (1979), 427-432.

CHANG KYU HUR, DEPARTMENT OF MATHEMATICS, HANNAM UNIVERSITY, TAE-JON 300-791, KOREA

HEE SIK KIM, DEPARTMENT OF MATHEMATICS, HANYANG UNIVERSITY, SEOUL 133-791, KOREA

E-mail: heekim@email.hanyang.ac.kr