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A CHARACTERIZATION OF SPACE FORMS

DoNG-Soo Kim! AND Young Ho Kim?

ABSTRACT. For a Riemannian manifold (M™,g), we consider the
space V(M™, g)of all smooth functions on M™ whose Hessian is pro-
portional to the metric tensor g. It is well-known that if M™ is a
space form then V(M™) is of dimension n + 2. In this paper, con-
versely, we prove that if V(M™) is of dimension > n+ 1, then M™
is a Riemannian space form.

1. Introduction

Let (M™, g) be an n-dimensional Riemannian manifold (n > 2) with
the Riemannian connection V. For f € C®°(M™), the Hessian H7 of f
is a symmetric (0,2) tensor field on M™ defined by

(1.1) HI(X,Y)=g(VxVFfY), X, YeTM,

where V[ denotes the gradient vector field of f. Let V(M™) be the
space of all smooth functions on M"™ whose Hessian is proportional to
the metric tensor g and m(V ™) denote the dimension of V(M™). Then
clearly we have m(M™) > 1 for any (M™, g). For the Riemannian space
forms M™ = S™(r), H"(r) or E™, we have m(M™) = n + 2, respectively
(see §2).

Hence it is natural to ask the following question ([5,10,14]):

To what extent does m(M™) determine the geometrical and topolog-
ical structure of (M™,g) ?

And they proved, in our terminology, the following ([10,14)):
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THEOREM. Let (M™, g) be a complete connected Riemannian man-
ifold with m(M™) > 2. Then the number N of critical points of a non
constant f € V(M™) is less than or equal to 2 and M™ is conformally
diffeomorphic to

(i) the Euclidean sphere S™(N = 2),

(ii) the Euclidean space E™, or the hyperbolic space H®(N = 1),

(iii) the Riemannian product I x F, where (F, g.) is a complete (n-1)-
dimensional Riemannian manifold and I is an open interval (N = 0).

In this article, we study the manifolds M™ with m(M™) > 3. As a
result, we prove the following:

THEOREM A. Let (M™,g) be a compact connected Riemannian
manifold. If m(M™) > 3, then M™ is isometric to the Euclidean sphere
S™(r).

THEOREM B. Let (M™,g) be a complete noncompact connected
manifold. If m(M™) > n+ 1, then M™ is isometric to the Euclidean
space E™ or the hyperbolic space H™(r).

These results are sharp in the sense that (1) the ellipsoid of revolution
M™ in R™*! defined by a?2? + b?(z3 +--- +22,;) =1, a # b, has
m(M™) = 2, (2) if M™ is the cylinder R"~!x S, then we have m(M™) =
n.

It is obvious that for 1-dimensional manifold M?, we have m(M?!) =
00.

2. Examples

ExAMPLE 1. Euclidean space E™

It is straightforward to show that
V(E™) = {az.’c? + Zaimi + bla,ay,- -+ ,an,b € R},
i=1 i=1

where (z1,--- ,Zn) is the rectangular coordinates for E™.
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ExAMPLE 2. Euclidean sphere S™(r)

For the Euclidean sphere S*(r) = {(z1, - ,Znt+1) € R™! E"H 2
=7?}, it is not hard to show that the restriction f of each function of
the form: Z - Yaiz; + b, a;,b € R, belongs to V(§™(r)). Conversely,
each nonconstant function f € V(S"(r)) satisfies Af + (n/r?)f = ¢
(constant) (see Lemma 3.1). Hence h = f — cr?/n is a nonconstant
eigenfunction of S™(r) with eigenvalue n/r?. Therefore we see that A is
a first eigenfunction of S™(r)([6]), that is, f is the restriction of one of
the above functions.

EXAMPLE 3. Warped product space I x,, F*~! with dim I=1.

For an (n-1)-dimensional Riemannian manifold (F,g,) let M™ be
the warped product space I x,, F' with metric g = dt? +w(t)?g,., where
I is an open interval and w(t) is a positive function on I ([4,13]). Then

for the function f defined by f(t) = a f;. w(t)dt + b, a,b€ R, it can
be shown that H/ is proportional to g. Hence we have m(M™) > 2.

EXAMPLE 4. Hyperbolic space H"(r)

Let RT'! be the Lorentz-Minkowski space with metric tensor ds® =
dz}+ .-+ dz? — dz? ;. Then we have

H™(r) = {x € R} |(z,z) = —r2, zp41 > 0}.

It is straightforward, as in Example 2, to show that the restriction f

of each function of the form : Z"+11 a;x; +b, a;,b€ R, belongsto

V(H"(r)).

Conversely, using the geodesic polar coordinates centered at (0,--- ,
0,7) or equivalently, the warped product structure H™(r) = [0,00)
X S™1(1) with w(t) = rsinh £, it is not hard to show that each func-
tion f € V(H™(r)) is the restriction of one of the above functions.

3. Basic formulas

Let (M"™,g) be a Riemannian manifold of n-dimension, V the Rie-
mannian connection and

R(X,Y)Z = VxVyZ - VyVxZ - VixvZ
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the curvature tensor. We write also (X,Y) instead of g(X,Y) if this is
convenient.
Note that for f € C°°(M™), f belongs to V(M™) if and only if

(3.1) VxVf=¢X, XeTM, where ¢=Af/n.

Then it is easy to prove the following:

LEmMMA 3.1. If f € V(M™), then we have for XY ¢ TM
(1) RX,Y)Vf =X(p)Y —Y(p)X
(i) Ric(X,Vf) = —(n —1)(X, V), where ¢=Af/n.

Thus for an Einstein manifold M™ with Ric = (n—1)K g we see that
Af + nKf is constant.

LEMMA 3.2. Let U be an open set without critical points of a func-
tion f € V(M™) and let e; be the unit vector field in the direction of
V f. Then we have the following:

(i) the integral curve (t) of e; is a geodesic and the level hypersur-
faces of f are totally umbilic.

(ii) w = |V f] and np = Af are constant along the levels of f.

(ili) For any vector field X, the sectional curvature K = K(X AV f)
of the section spanned by X and V f is constant along the levels of f
and does not depend on X.

(iv) Along v(t), w(t) = w(v(t)) and K(t) = K(y(t)) are related by

(3.2) w”(t) + K(t)w(t) = 0.

Proof. The equation (3.1) reads as follows:
X(w)e; + wVxer =X for all X eTM,
or equivalently

(3.3) ei(w) =y, Vee =0 and

(3.4) Vxer = gx, X(w)=0 for all X Le.
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Since we have
(3.5)
X = X(ew) = ex (Xw) + [X, ex](w) = (Vxer)(w) — (Ve, X)(w),

(3.3) and (3.4) imply that X¢ = 0 for all X 1L e;. For any unit vector
X such that X | e;, we have from Lemma 3.1

K(X Aey) = (R(X,e1)e1, X)

= %[(X((p)el —e1(p) X, X))

__a (¢)
w 2
and as in (3.5) we may prove that X(ei1p) = 0 for all X L e;. This
completes the proof. a
For a fixed point p € U, choose an orthonormal basis es,--- , e, of

the level hypersurface F' through p. We denote the parallel translates
along 7(t) of ez, - - , e, by the same notation. For each ¢ € {2,--- ,n}
let 7;(s) be the integral curve of e; in F' with 7;(0) = p, and z(s, t) be the
one parameter family exp,, ,)(te1) of geodesics. Then J;(t) = z5(0,t)
is a Jacobi vector field along +, so that it satisfies the Jacobi equation

w(0)

(3.6) J'(t) + R(Ji,e1)ep =0 with Ji(0)=e;, JI(0)= 0

€;,
where w'(t) denotes the derivative with respect to t.

Since e; is parallel along v, (3.2) and the Jacobi equation show that
(Ji(t),e1) = 0 and

(37) (J’t(t)’eJ>”+K(t)<‘]l(t)7e]> = 07 .7 € {27 ,TL}.
Hence from (3.2) and the initial condition we obtain

w(t)

(3.8) Ji(t) = w(0)

€;.

This shows that the metric g of M is locally given by g = dt?+ :}’7%%; Ie»
that is, M is locally the warped product space I Xy z)/w(0) F-

Thus from Example 3 of §2, we obtain the following ([10,14]):
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LEMMA 3.3. The following conditions are equivalent:

(i) There exists a neighborhood U of p and a function f € V(U) with
Vf(p) #0.

(it) There exists a neighborhood U of p such that U is a warped
product space I x,, F' with 1-dimensional base I.

In his Thesis ([7]), K. L. Easley found an equivalent condition of the
above lemma (see also [1]).

The situation is quite different near a critical point of f. W. Kiihnel
proved that the critical points of a nonconstant function f € V(M")
are isolated ([10,14]). Around a critical point p € M of a nonconstant
function f € V(M) we may prove the following ([10]):

LEMMA 3.4. The following conditions are equivalent:

(i) There exists a neighborhood U of p and a nonconstant function
feV(U) with V f(p) =0.

(ii) There exists polar coordinates (t,u1, - ,un—1) in a neighbor-
hood of p and an even function f = f(t) with f'(0) =0 and f"”(0) #0
such that

f'(®?

PR

where g, denotes the metric of the Euclidean unit sphere S*~1(1).
(iii) There exists a function A(t) defined on (0,%y) such that, for each

£ eT,M, |€| =1, and each t € (0,ty) the shape operator S,(m) of the

geodesic sphere G(p,t) at m = exp,(t€) satisfies Sp(m) = A(t)I.

g=dt* +

Proof. Equivalence of (i) and (ii) was given in [10]. (i) = (iii) is
given by (3.4) with A(t) = w/(t)/w(t). Suppose that (iii) holds. Then
Theorem 12 in [9] implies that, with respect to any normal coordinates
centered at p, the metric tensor g is given by the formula:

n _ 2 n . .
g=h*t) ;(dxif T aLal t’; (©) (;::1 a'dr')?,

where h(t) = exp{fot()\(r) —Ydr}, and 2 =37 | 22
Since 3.1, (dz?)? = dt? + t2ds?, where ds? is the line element of the
unit sphere in T, M, we get by substitution

g = dt® + w(t)ds3, w(t) = th(t).
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Now we may prove that f(t) = fot w(r)dr satisfies (3.1) on the geodesic
ball of radius ¢y around p. d

Note that for a critical point p of f € V(M™) the level hypersurfaces
of f coincide with the geodesic spheres around p and p is an isotropic
point with curvature K (0). For the space form E™ S™(r) or H™(r) we

have

11 t 1 t
At) ==, —cot— or —coth-,
t r r T T

respectively.

4. Proofs

In this section we prove the main theorems and we assume that M™
is connected and complete.

First, we give some lemmas. Note that for any nonconstant function
f € V(M™), the number N of critical points of f is less than or equal to
2 and M™ is conformally diffeomorphic to S*(N = 2), E® or H*(N = 1)
and I x F(N =0) ([10]).

LEMMA 4.1. Let fi, fo € V(M™) with V f1(p) = Vfa(p) = 0. Then
{f1, fe,1} is linearly dependent on M™.

Proof. We may assume that fi, fo are nonconstant functions. For

any radial geodesic v(t) emanating from p, let w;(t) = |V fi|(v(t)), i =
1,2. Then w;(t) satisfies

(3.2) wl(t) + K(t)w;(t) =0 with w;(0) =w2(0) =0.

Hence we have wa(t) = aws(t), where a = w)(0) /w}(0). Since f;(t) =
fot w;(t)dt + £;(0), this completes the proof. O

LEMMA 4.2. Let fi,f2, -+, fx € V(M™) with k < n. If dim{{V
filp),--+, Vfe(p)}) < k—1 at each point p in an open set U, then
{f1,--+, fx,1} is linearly dependent on M™.
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Proof. For k = 1, suppose that V f; = 0 on an open set U. Then f;
must be constant, because f; has infinitely many critical points.

Now assume that the lemma holds for ¥ < n — 1. Suppose that
dim({Vfi(p),--- , Vfi+1(p)}) < k on U with k+1 < n. Then by induc-
tion hypothesis we may assume that Uy = {p € U|dim{{Vfi(p),---,
Vfe(p)}) = k} is a nonempty open set. On U; we have Vfi 3 =
hiVfi+- -+ eV fi. And (3.1) shows that for all X we have

(41) ppr1X = X(h)Vfi+---+ X (he)V fie + (hror + - + b)) X,

where ¢; = Afi/n,z' =1,---,k+ 1. Since ¥ <n — 1 we can choose X
so that X is orthogonal to {V f1,---,Vfi}. Hence (4.1) implies that

(4.2) Yk+1 = h1p1 + -+ + hxpr.

By (4.2) together with (4.1) we see that hy,--- ,h; are constants
ay,--- , @k, respectively. Therefore the gradient of fr+1 — (ayf1 +--- +
ar fr) € V(M™) vanishes on Uy, in particular, it has infinitely many
critical points. Thus it must be constant on M™. This completes the
proof. a

LEMMA 4.3. Let c be a regular value of f; € V(M™) and Fy be the
hypersurface f{}(c). Then

(i) For any f € V(M™), the restriction f = fip, of f belongs to
V(Fy).

(i) If {f1,---,fx,1} is a linearly independent subset of V(M™),
then {f3,---, fi,1} is linearly independent. Hence we have m(F1) >
m(M™) — 1.

Proof. (i) Let V be the induced connection of F; and VS be the
gradient vector field of f on F;. Then, using Lemma 3.2, a direct com-
putation shows that for all X € TF,

> =i eV, V)
VxVf= (¢ K2R

where ¢ = Af /n and ; = Afi /n.

)X,
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(ii) Suppose that ap fo+ -+ ak fk + b =0 on F;. Then we have on
F1,V(agfa+---+arfi) = hV fi for some function h on F;. By (3.1) we
get for all X € TFy, (aapa+ -+ arpr)X = X(R)Vfi + hgo1 X. Thus
we see that h is a constant ¢, which implies that c¢f; — (agfo +--- +
ak fr) is a function in V' (M™) which has infinitely many critical points.
Therefore c¢f; —(a2fa+- - -+ ax f) must be constant. This completes the
proof. O

Proof of Theorem A. Suppose that {fi1, f2,1} is a linearly indepen-
dent subset of V(M™). Since M™ is compact, M™ is conformally diffeo-
morphic to S™([10]) and there exist exactly two critical points pj,q; of
f1. Let pg be a critical point of f, and let d = d(p;,p2) and | = d(p1,q1).
Then from Lemma 4.1 we have 0 < d < [l. Consider the geodesic ~(t)
with ¥(0) = p1, 7(d) = p, then we have v(I) = ¢1([10]).

Note that the geodesic sphere G(p2, d) passes through p; and meets
every geodesic sphere G(p1,t), 0 < t < d. For a fixed tp € (0,d] let ¢
be a point in G(p2,d) N G(p1,to) and let m,m2 be the geodesic from
P1,p2 through g, respectively. Then we have 11 (ty) = 72(d) = ¢ and
{m(to),m2(d)} is linearly independent. Thus Lemma 3.2 implies that
Ki(to) = K1(n2(d) Ami(to)) = Ka(d), where K;(t) and K»(t) are the
sectional curvature functions corresponding to f; and f2, respectively.
Since G(p1,d) = G(q1,1 — d), for a fixed tp € [d,l), we may as above
prove that Ky(to) = K2(l — d). Hence K;(t) is a constant k on (0,1)
hence on [0,1].

Note that w;(t) satisfies

(3.2) wi(t) + kwi(t) =0 with w(0) = wy(l) = 0.

Thus k must be positive (say, 1/r?), so that we have w; (t) = asin(t/r),
a € R. The shape operator Sp, (7(t)) of the geodesic sphere G(py,t) at
~(t) satisfies Sp, (v(t)) = wi(t)/wi(t) = (1/r)cot(t/r), which implies
that the sectional curvature Kps of M™ is k = 1/r?([9]). Since M™ is
simply connected, M™ is isometric to the Euclidean sphere S™(r). O

Proof of Theorem B. Let {f1,---, fn,1} be a linearly independent
subset of V(M™). Then Lemma 4.2 implies that there exists an open
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dense subset U such that {V fi(p), -,V fn(p)} is linearly independent
for all p € U. By Lemma 3.1 we see that the sectional curvature of
M™ is a constant K on U hence on M™. Since M™ is noncompact, K
is nonpositive. If there is a nonconstant function f in V(M") such
that Vf(p) = 0 for some p € M, then M™ must be simply connected,
which implies that M™ is isometric to R™ or H™(r). Thus the proof is
completed.

Now suppose that V f(p) # 0 for all p € M and for all nonconstant
f € V(M™). Then by Lemma 4.3, we see that M™ is isometric to the
warped product space R x,,, F1, where F] is a level hypersurface of f;.
Note that Fj is also complete and connected. And Lemma 4.3 shows
that m(F}) > n and F; is also a warped product space R X, F2, where
ws is the length function of gradient of the restriction fg of fo on Fy
and F: is a level hypersurface of f3 in F;.
Inductively, we have the following:

M*=R Xawy F1
= R X4, (R Xy, F?)
=R Xy (R Xy (R Xayy (R Xawp_1 Fn—-l)"')'

Note that each Fi, = R Xy, ,, Fiy1 is a complete connected (n — k)-
dimensional manifold with m(Fy) >n—k+1and R Xy, , Fn_1is a
warped product space with m(R X, _, Fn—1) > 3. Since we can prove
that V(R X4,_, S1) = {afot wp_1(8)ds + bla,b € R}, F,,_; must be
the Euclidean line. This implies that M™ is isometric to R x,,, R X
“++ Xy, _, R, in particular, M™ is simply connected. This completes the
proof. [
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