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ASYMPTOTIC LENS EQUIVALENCE IN
MANIFOLDS WITHOUT CONJUGATE POINTS

DoNG-SOONG HAN

ABSTRACT. We prove the asymptotic lens equivalence in manifolds
without conjugate points. By using this property we show that under
a metric condition of asymptotically Euclidean and the curvature
condition decaying faster than quadratic, any surface (R2, g) without
conjugate points is Euclidean.

1. Introduction

A complete Riemannian manifold has no conjugate points if any
two points in its universal cover are joined by a unique geodesic. This
condition is a natural generalization of nonpositive curvature. Hence
many results for manifolds of nonpositive curvature can be generalized
to manifolds without conjugate points.

In (8] they showed that the Euclidean spaces R™ (n > 3) are rigid
under compactly supported perturbations with nonpositive (or nonneg-
ative) sectional curvature by using the generalized Gauss-Bonnet theo-
rem. Also these results were generalized to an asymptotic condition in
[9].

In the case of manifolds without conjugate points we can not use
the curvature condition. However [7, 2, 3] established that the Eu-
clidean space is rigid under compactly supported perturbations having
no conjugate points by using the Hopf theorem and the lens equiva-
lence. The lens equivalence of the two metrics go,g; means that if 7o
is a gp-geodesic such that «o(t) does not lie in some compact set K for
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|t| > T then there is a g-geodesic 7; such that yo(t) = ¥1(¢) for all
[t| > T. This implies that for any z,y € 0K dp(z,y) = di(z,y).

The purpose of this paper is to develop the basic tool of the proof
of a rigidity theorem in the manifold without conjugate points, i.e.,
the asymptotic lens equivalence which extends the condition of com-
pactly supported perturbations to an asymptotically decaying metric
condition.

Let (R™, g1) be a manifold without conjugate points, and go be the
Euclidean metric in R™. The asymptotic lens equivalence of two metrics
go, g1 means that for any geodesic v(t) in g, metric there exists a unique
line I(¢), i.e., a geodesic with respect to (R™, go) such that the distance
of 4(t) and I(t) decrease as t goes to infinity.

In this paper (R, g1) is called “asymptotically Euclidean” if for some
fixed point p € R™ and a number a( 0 < a < 1), we have

l90(2) — g1(2)| < Cr(2) 7272, |Bigr(2)] < Cr(z) 73,

where C is a constant and r(z) is the distance from p to & with respect

to go.
In this paper we will prove the following asymptotic lens equivalence.

ASYMPTOTIC LENS EQUIVALENCE. If (R™,g;) is a manifold without
conjugate points with an asymptotically Euclidean metric, then (R", g1)
and (R™, go) satisfy the asymptotic lens equivalence.

As an application we show that any surface without conjugate points
which has an asymptotically Euclidean metric and a curvature decay-
ing faster than quadratic is Euclidean. In order to prove this rigidity
theorem, we first show that there is an 1-1 correspondence of geodesics
between (M2, g;) and the Euclidean plane by using the asymptotic lens
equivalence. Then we prove the weak parallelism of (R?, g;) in the sense
of [1). This implies the rigidity theorem by [1]. In [11] they showed this
rigidity theorem by another method. Unfortunately this method can
not be extended to higher dimensional cases. Since we already obtained
the asymptotic lens equivalence in any dimension, if another ingredi-
ents such as (3, 4, 5] is established we can prove the following rigidity
conjecture.
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Asymptotic lens equivalence in manifolds without conjugate points

CONJECTURE. If (R",g;) is a manifold without conjugate points
with an asymptotically Euclidean metric and a curvature decaying
faster than quadratic, then (R™, g1) is Euclidean.

This work began while the author was visiting the University of
Pennsylvania, and he thanks all the faculty members in the Mathemat-
ics Department, especially C. Croke for introducing this problem and
discussing the result.

2. Basic properties

In this section we will first consider the relation between the distance
functions of (R™, g1) and (R"™,go). Throughout this paper, the lower
index 1 means the given asymptotically Euclidean space and the lower
index 0 means an Euclidean space.

PROPOSITION 1. For any points z,y € R", let v;(z,y) be a geodesic
segment between r and y in (R",g;). If v(x,y) N Bo(p, R1) = ¢ for
some number Ry > 1 and any i, then

|d0($, y) - d1($, y)l < ClRl_l_aa
where C; is a constant which is independent of the choice of ,y.

Proof. Putl; = d;(x,y). Assume that v; has the arclength parameter
with respect to (R", g;) such that v;(0) = z € 8Bo(p, R1) and vi(l;) = .
Using the Cauchy-Schwartz inequality, we have

L 2 L
OManS(AIwMQ suﬁ|%mﬁ¢

where | - |; denotes the norm defined by g;. Since |y;; = 1,

l;
(Q@wf=ﬁ=hll%m&%

Hence by the asymptotically Euclidean property
I;
(dj(z,9))* — (di(z,))* < LCy /0 r(yi(t) 72,
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When ¢ =0, =1 and ¢ < 8Ry, since r(y(t)) > R:
lo
0

If t > 8R;, the triangle inequality for triangle (pzyo (t)) yields
7(70(t)) = do(p,Y0(t)) = (t — R1)
> (%+4R1 —R)= %+3R1.

Hence
8R1 lo t
212 <l / r(vo(8)~2dt +3C, [ (& + Ry)-2-dt
0 8R, 0
SlngRl—l_a.
Therefore

(I, —lp) < C3Ry 172,
We conclude that
di(z,y) < do(z,y) + C3Ry ™12
When ¢ = 1, j = 0, by the previous result
t =di(z,1(t)) < do(x,m(t)) + CaRL ™12
< do(p,11(8)) + do(p,z) + CaRy '™
If t > 8Ry, then we have

r(71(t)) = do(p,71(t)) >t — Ry — C3R, ™' ~°
>t—-2R;

Z%+4R1—2R1

t
> -+ 2R;.
_2+ R,

Hence by a similar argument, we obtain

do(z,y) < di(z,y) + C3Ry 1% O

Next we will investigate the asymptotic behavior of geodesics by
using the first derivative condition of the metric.
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Asymptotic lens equivalence in manifolds without conjugate points
LEMMA 1. Let v,(t) be a geodesic ray of (R", g1) which lies outside

Bo(p, Ry), ko be the geodesic curvature with respect to (R", go). Then
for some constant Cy

Iko(m ()] < Car(m(2) >~

Proof. Let v1(t) = 3 vtX;, where {X;} is an orthonormal basis with
respect to go. Since ; is a geodesic in (R", g1), it satisfies

Dy dv
_Et_:zk: Z’U ’UJF]_.U .Xk——o

where 1"15-“]- is the Christoffel symbol of (R™,g;). Since the Christoffel
symbol is expressed by the sum of 1-st derivatives of metric, i.e.,

_ 0gjm | Ogmi _ 0gij | km
T2 Z{ Ox; azj Oz g

it satisfies that
015 (2)] < Car(z) ™7

Assume that v;(¢) has the arclength parametrization with respect to
(R™, go)- Then

{Ko(m1(2))| =

Do’h (t) ‘

dv®
"t

— E § : FayiT. K
- v Flij
k| ig

< Cyr(m(t) 3= 0
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PROPOSITION 2. Let v1(t) be a geodesic ray in (R",g;) such that
71(0) = q lies in 8By(p, R1) and v{(0) = v is a radial direction of
Bo(p, R1). Then v(t) (t > 0) lies in the cone Cone(q,v) with the
vertex q and angle @ = CsRy ™2™ from v where Cy is some constant
independent q.

Proof. In any point of (%), 6(t) has the maximum value when 7} (¢)
lies in the plane P which passes through +;(¢) and v. Therefore we will
consider 7, (t) which lies in P with the polar coordinate (r, 6).

When 6 = f(r), the geodesic curvature xo(7y:(t)) is

[2£/(r) + rf"(r) + r(/(r))
T+ EOPPE

Using Lemma 1, f(r) must decrease with the order of r=27 i.e.,
6 < CsRy "2,

By this proposition, we know that no geodesic turns around p for a
sufficiently large R;. Furthermore when ¢ is the line from +;(0) with
the direction +1(0), the height function h(t) from o is the integral of
sin 0(t) ~ 6(t),

h(t) < CeRy 172

Therefore any geodesic y; will become straight. |

PROPOSITION 3. For any sufficiently large Rz let 1 (t) be a ray such
that it lies outside Bo(p, R2) with v1(0) € 8Bo(p, Ry) and +1(0) is not
tangent to 0By(p, Ry). Then there exists a unique Euclidean line I such
that

do(v1(t),1) < CyRy™17%(t > 0).

Furthermore we can take the parameter such that

do(11(t),1(t)) < CzRy ™' ~%(t > 0).

746



Asymptotic lens equivalence in manifolds without conjugate points

Proof. We can assume that Cone(y1(0),71(0)) N Bo(p, R2) = ¢ since
v1(0) is not tangent to 8By(p, R2).

Let P; be a tangent plane to the Cone(v1(0),71(0)) and 41 be the
projection of v; to the plane P;. Consider the line l; from 41 (0) to
’~)’1 (t), let

liiri)sgp 1;(0) = vs, lim inf 1:(0) = v;.

Since 1;(0) is bounded by proposition 2, we can find v, v;.

If vs # v;, we can take the line o(t) such that ¢(0) = 4:(0) and
0'(0) = vp(v; < vy, < vs). By Lemma 2 the height of v;(t) from o
decreases and v, and v; must be same. Call this direction v;.

We can find the tangent planes P (k = 1,-.-,n) which are not
parallel to each other, and the direction vx with respect to plane Pj.
Therefore we have a unique asymptotic direction v. Also we can take
the circular cylinder with the axis v such that 41(¢) (¢ > 0) is contained
in this cylinder and its diameter is the smallest. Since the height h(t)
is the radius of the cylinder and it decreases as r increases, we can find
a unique asymptotic line [ such that for any ¢t > 0, Ra

'(0)=v, do(m(t),l) <CrRy™'7" 0

3. Proof of asymptotic lens equivalence

We will prove the asymptotic lens equivalence, and this property
implies that there is an one to one correspondence between g; geodesic
and go geodesic.

PROPOSITION 4 (Asymptotic lens equivalence). For any geodesic
in (R", g1) there exists exactly one line l such that v(t) is asymptotic to
I(t) as |t| goes to infinity. And for any &,3 € 8Bo(p, R3) and sufficiently
large Rg3,

IdO(j,g) - dl(l‘ay)l < CSR3—1—Q

Proof. Let v be a geodesic from Z to § in (R™, g1) such that y(0) =
Z,7v(a) = g for any &, § € 8By(p, R3). By Proposition 3, there exist two
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asymptotic lines {;(2), l2(t) such that

do(v(t),01(t)) < CyRg™'™* for t <0,
do(y(t),l2(t)) < C7R3™™ for t>a.

Then we can easily show that l; and I have the same direction. If
not, for a large t there exists a minimal geodesic in (R",g;) through
ly(—t),l2(t) which does not pass By(p, R3) by proposition 1. This is a
contradiction to the assumption of no conjugate points.

Let © = 8By(p, R3) U l1(t) for t < 0 and y = 8By(p, R3) U la(t) for
t > a. If these z,y are not found, then we should take a little bigger
ball. Also we assume that Z(uZz) < 7/3 and Z(wiy) < 7/3, where u
is the foot of the perpendicular line from & to Iy and w is the foot of
the perpendicular line from § to ls.

We will first show that di(Z,4) < do(x,y) + €. Choose any point z
in R™ — By(p, R3). We thus have

2t + di (%, 9) = di(y(-t),7(t + a))
< di(v(-t),2) + di(¥(t + a), 2)).

For large values of ¢ and appropriate choice of 2, go geodesic segments
from z to [;(t) do not intersect By(p, R3). By Proposition 1,

dy(%,9) < do(l(—t), z) + do(la(t + a), z) — 2t + 2C7R3 ™.
As t goes to infinity, we get

dl(i‘,ﬂ) S dg(xay) + 2c'7-R3——1-C"
< do(x,y) + 2C7R3 172,

where dfj is the length of the projection of line segment to ;.
Now let [(t) be a line in R™ parameterized by arclength which dose
not pass through By(p, R3) but is parallel to and has the same orienta-
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tion as the line from z to y. Then

2t =do(I(-1),1(2))
<d(I(~t),1(t)) + CLRg >
<di(I(~t), %) + d1(Z, %) + d1(§,1(t)) + CLRs~ >
<do(l(—t), &) + di(&,7) + do(§,1(t)) + 3C1R3 ™2~
<do(l(~1), ) + do(z, %) + d1 (&, §)+do(y, U(t))+do(y, §)+3C1 Rz '~
<do(l(~1t),z) + di(&,F) + do(y, (t)) + TC7Rs 172

Thus we see that
2t — do(I(—t), ) — do(U(t),y) < d1(&,9) + TC7Rs ™' ™"
Taking the limit as ¢ goes to infinity, we get
do(z,y) < d1(&,§) + TC7Rs ™1 7.
Finally we get
do(z,y) < di(&,§) + TC7R3™™* < dj(,y) + 9C7Rs ™.

Therefore
ldo(z,y) — di(z,y)| < CsRs™'7°.

If two asymptotic lines are not same, A = dp(z,y) —dj(z,y) is a strictly
positive number. Therefore

do(z,y) < do(z,y) — A+ TC7Rs™ %,
However we can choose two points x € [}, y € I3 such that —A +
7TCR;~17® < 0 since A decreases as the polynomial degree of order 1

by the direct calculation in the Euclidean space. Hence for any geodesic
in (R"™, g1), two asymptotic lines are same. O
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4. Application of the asymptotic lens equivalence

Let M be a 2-dimensional asymptotically Euclidean plane without
conjugate points which has the quadratic decaying condition of curva-
ture, i.e.,

|K(z)| < Cr(z) "2 *(0 < a <1).

In this section we will show that M is Euclidean.

First we show that the set of g; geodesics has a one to one correspon-
dence to the set of go geodesics using the asymptotic lens equivalence.
Consider the scalar Jacobi equation,

y" + K(z)y =0,

where K (z) is the curvature function of (M, g1). In [10], it is show that
if [° zK (z) is finite, then there is a solution y;(z) such that

lim yl(x) = 1)

00

and its general solution is of the form
y(z) = A(1 + f(z)) + Bz(1 + g(x)),

where A and B are arbitrary constants and lim; o f(z) = 0, limz—00
g(z) = 0. Since in our case the curvature function decays faster than
quadratic order, every solution of the Jacobi equation is of the form

y(z) = A1+ f(z)) + Bz(1 + g())-
Hence every stable or unstable Jacobi field y4 has a form
yx = A(l + f(z)),
where 1+ f(z) > 0.
Suppose two g; geodesics have the same asymptotic line. Since

(M, g1) has no conjugate points, two geodesics have at most one in-
tersection point.
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i) If two geodesic 71,72 have one intersection point g, by [6] we can
show that this is impossible; If a curvature is bounded below, then
geodesic rays from any point are uniformly divergent. Hence any two
geodesics intersect at g are divergent.

it) If 71,72 have no intersection points, there is a Jacobi field J(x)
such that

lim J(z)=0.
z~r+o00
However this is impossible by above remark.

The remaining thing is the surjectivity. That is, for any line {; we
must find a g; geodesic which is asymptotic to I;. For some fixed point
P1, we can find minimal g;-geodesic v,(t) from p; to l1(x). As t goes to
infinity, there is a limit g;-geodesic v (t) which has an asymptotic line
Iy parallel to l;. If 2 lies in the half plane lying p; with respect to
then take the point p2 in the other half plane, and vice versa. By the
same process, we can find g.,(t) and its asymptotic line l3. By repeating
this process, we can find sequence of lines {l;} and corresponding 7
such that [; is converge to [;. Hence we obtain the following proposition.

PROPOSITION 5. There is an one to one correspondence between the
sets of g; geodesics and go geodesics.

We will show the weak parallelism in the sense of [1]. This means
that there is a constant A > 1 such that for every point ¢ € R? and
every geodesic v in (M, g;1), there is a geodesic # with 3(0) = ¢ and

dist(3(t'),v) < Adist(8(t),~) for all ¢,¢'.

Then by [1] we conclude that (R?,g;) is the Euclidean plane. The
following Lemma is useful to prove the theorem.

CoMPARISON LEMMA. Counsider two scalar Jacobi differential equa-
tions
v+ Ki(z)y=0 :=1,2.

If Ki(z) < Ka(z) for x > 0 and positive solutions y;, i = 1,2, go to 1
as ¢ goes to infinity, then y; > ys for x > 0.
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Proof. Since y{y2 — y1y5 > 0, by taking the integration from z to
infinity we can obtain y; > yo. ]

RIGIDITY THEOREM. If (R2,g,) is a surface without conjugate
points with an asymptotic Euclidean metric and the quadratic decaying
of curvature, then (R2,g,) is isometric to the Euclidean plane.

Proof. Our proof consists of two steps; infinitesimal and global cases.
_ First we will show that for any g; geodesic v, there exists a number
A > 1 such that

sup y+(Y() _ 5 (_oo '
Tty (y)) 7 TR B <)

where y; means a stable solution of the Jacobi equation. We can as-
sume
lim Y+ = 1

t—too

since every stable solution has the form y, = C1(1 + f).
Consider the equation

v’ + K(z)y =0,

where |K (z)| < r(z)~2~. When K(z) = *r(z)~2~%, the solutions are
respectively

z1(x) = C1v/T Bessell(1/a, a/2z%/?) + Cay/Z BesselY(1/a, o/ 22%/2),
z2(z) = D1+/z Bessell(1/a, a/2z%/?) + Dyy/z BesselK(1/a, a/2x*/?),

where Bessel] and BessselY denote the first and second kind of Bessel
functions, Bessell and BesselK denote the first and second kind of mod-
ified Bessel functions. When Cy; = 0, D3z = 0, z; and 22 go to some
positive constants as z goes to infinity. Let

7o = the first zero of BesselJ(1/a, z),

then
01/27~(';°‘/2 = the last zero of BesselJ(1/a, a/2z™%/?).
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If |z| > ary o/ 2, then by the Comparison Lemma, we can find a con-
stant . Also inside of compact set, there exist positive maximum and
minimum values of y, for any geodesic through the compact set. Hence
we prove for infinitesimal case. Now assume that there is sequences of
geodesics {;}, {0} such that for all ¢,¢

sup dist(G;(t'),v;)
inf dist(8;(t), v:)

=Ai—>00

as ¢ goes to co. The asymptotic line-l,, of y; is parallel to the asymptotic
line Ig, of B; by the asymptotic lens equivalence.

If for any ¢ v; and ; stay in some compact set K, they have limit
lines l4,l3. Hence there are limiting geodesics <y, 3 by the one to one
correspondence of g; and gp geodesics.

1-i) dist(ly,l3) = ¢ > 0. Take a ball B with center at p such that
2r(x)~! < ¢ for ¢ € OB and B contains K. In the interior of B, \;
is bounded above by the compactness of B. In the exterior of B, by
Proposition 1 and Lemma 2

<c+§+e

- € _
C—2 €

for a sufficiently large ¢. Hence J\; is bounded.

1-ii) dist(l,,l3) = 0. In this case v = 8. Hence §; is a geodesic
variation of 4. But by the above infinitesimal argument, this cannot
happen either.

If L), or lg, is divergent, then sup dist(vi(t),.l,;) goes to 0, and the
same is true for 3;. We also will show that the following cases are also
impossible.

2-i) If the distance of [, and lg, is greater than some positive number
for any i > 49, by a similar argument as 1-i) we can show that A; is
bounded above.

2-ii) If not, for some large k we can find Ay such that Ax > 5\, where
) is a uniform constant for stable Jacobi fields.
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Let J(t) be a stable Jacobi field along vx. Consider the geodesic
variation h(s,t) : (—¢,€) x [—a,a] = M of v such that

h(ss t) = ezpa‘(s)tN(s)a

where o(s) is the geodesic in vx(—a) with velocity J(—a) and N(s)
is‘a normal vector in o(¢). Then by the comparison lemma and the
infinitesimal argument,

Bh(s, t)

> >
OV e

where A is some positive constant independent of k. Hence the min-
imum distance of v and h(e/2,t) is bounded by a constant. Also we
can take a constant ¢ for any i > k by the existence theorem of or-
dinary differential equation applied to the geodesic equation because
our Christoffel symbol is decreasing as lemma 1. Since |J(t)| goes to
1 letting ¢ to infinity, we can take any bigger a in the geodesic varia-
tion. Hence for any ¢ > k the minimum distance of +; and h(e/2,t) is
bounded by some constant which is independent of :. However I/, and
L, get close more as % goes to infinity, for large ¢ A; must be bounded
by A. This is a contradiction. ]
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