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SINGLY GENERATED DUAL OPERATOR
ALGEBRAS WITH PROPERTIES (A,,.)

Kun Wook CHol, IL BoNG JUNG AND SANG HUN LEE

ABSTRACT. We discuss dual algebras generated by a contraction
and properties (Am,n) which arise in the study of the problem of
solving systems of the predual of a dual algebra. In particular, we
study membership for the class A; .. As some examples we consider
dual algebras generated by a Jordan block.

1. Introduction and preliminaries

Let H be a separable, infinite dimensional, complex Hilbert space
and let £(#) be the algebra of all bounded linear operators on H.
Suppose that C; = C1(H) be the trace class in £(H). Then it is well
known that the dual space C7 is isometrically isomorphic to £(#) under
the pairing (T, L) = tr(TL), T € L(H),L € C,. A dual algebra is a
subalgebra of L(H) that contains the identity operator Iy and is closed
in the weak*-topology on £(#). For T € L(H), let Ar denote the
dual algebra generated by 7. The theory of dual algebras is applied to
the study of invariant subspaces, reflexivity and dilation theory. This
theory is closely related to properties (A, ,) which arise in the study
of the problem of solving systems of the predual of a dual algebra (cf.
[2]). In this paper we discuss dual algebras generated by a contraction
and properties (A, 5).

A brief outline of this work is as follows: in Section 2 we discuss some
sufficient conditions for the membership of the classes A, , which will
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be defined below. In Section 3 we study dual algebras generated by
Jordan operators and properties (A, ).

Now let us recall some notation and terminology from [2]. Suppose
that A is a dual algebra in £(#) and let ~.A denote the preannihila-
tor of A in C;. Let Q4 denote the quotient space C;/%.A. Then one
knows that A is the dual space of Q4 and that the duality is given by
(T,[L]la) = tr(TL), T € A, [L]4 € Q4. Without any confusion, we
write [L]4 = [L]. For vectors z and y in H, we write, as usual, z® y
for the rank one operator in C; defined by (z ® y)(u) = (u,y)z, for
ueH.

Throughout this paper, we write N for the set of natural numbers, D
for the unit disk in the complex plane C and T for the boundary of D.
For a Hilbert space K and any operators T; € £(K), ¢ = 1,2, we write
Ty = T5 if T} is unitarily equivalent to T5. For T € £L(K) we write the
n-th ampliation of T by

e N,
(1.1) T =Tg...0T, 1<n<oo.

Suppose that m and n are cardinal numbers such that 1<m,n<R.
A dual algebra A will be said to have property (A, ) if every mxn
system of simultaneous equations of the form

(1.2) [a:,-®yj] = [Lz'j], 0<it<m, 0<j5<mn,

where {[L;;]} 0gicm is an arbitrary m x n array from Q 4, has a solution
i<n

{zi}o<icm, {yJ }0< j<n consisting of a pair of sequences of vectors from
‘H. Furthermore, if m and n are positive integers and r is a fixed real
number satisfying r > 1, a dual algebra A (with property (A, ,)) is
said to have property (A, (7)), if for every s > r and every mxn array
{[L:;]} ogi<m from Q 4, there exist sequences {z; }o<i<m and {y;}o<j<n

from 7-[ that satisfy (1.2) and also satisfy the following conditions:

(1.3a) lz:l*<s Y lLglll, 0<i<m
0<i<n
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and

(1.3b) lyl2<s > ML, 0<i<n
0<i<m

Finally, a dual algebra A CL(H) has property (A, x,(r)) (for some real
number r > 1) if, for every s > r and every array {[L;;]} osi<m from Q 4
j<oo

with summable rows, there exist sequences {;}o<i<m and {¥;}o<j<co
of vectors from H that satisfy (1.2) and (1.3a,b) with the replacement
of n by No. Properties (A, n()) and (Ag, x, (7)) are defined similarly.

For the sake of brevity we shall denote (A, ») by (A,).

We denote by Qr the predual of Ar. We denote by A = A(H) the
class of all absolutely continuous contractions T" in £(#) for which the
Foiag-Sz.-Nagy functional calculus &7 : H*®— Ar is an isometry. Let
or : Qpr — L} /H& be the isometric corresponded by ®7 such that
¢7 = ®r. Furthermore, if m and n are any cardinal numbers such that
1<m,n<Ng, we denote by Ampn = Apy n(H) the set of all T in A(H)
such that the dual algebra Ar has property (A, ).

Let Py be the Poisson kernel function in L!, for each A € D. For a
given contraction T € A, let us write ¢7'([P5]) = [C>]. Then we have
<f(T)’ [Cz\D = f(A)) for f € H™.

Recall (e.g., from [12]) that the class Cj. consists of those operators T
such that ||T"z|| — 0 for all z € H, C.9 = (Cp.)*, and Cgo = Cp.N C.y.

For M € Lat(T'), the class of invariant subspaces for an operator T' €
L(H), we denote by T'|M the restriction of T to M. If T € L(H) and
K is a semi-invariant subspace for T' (i.e., there exist Ky, € Lat(T)
with K; D K3 such that K = K; © K2), we shall write Tx = PcT|K
for the compression of T to K, where Px is the orthogonal projection
whose range is K.

2. Membership for the classes A,, ,

For T € L(H), we write F.'(T) for the set of all points A in C such
that T — X is a Fredholm operator with positive index.
The following theorem may be compared with [5, Theorem 3.1].
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THEOREM 2.1. Suppose that T € A(H), m € N, A C D is domi-
nating for T and can be written as A = | J; <, <, Ai, where Ay C 0.(T).
In the case of m > 2, assume that for 2 <t < m, there exists a semi-
invariant subspace M; for T such that Tay, € C.o (or Ta, € Co., resp.)
and that for every A € A; and © = 2,--- ,m, there exists a sequence
{zA}2; of unit vectors in M; converging weakly to zero and satisfying

(2.1) liCAlr = [z ® 2lrll = 0 (n— o0).

Then T € Ay, (or T € Ap, 1, resp.).

Proof. Suppose first that m = 1. Then ¢.(T) N D is dominating for
T. Let F, (T) be the set of all points A in C such that T — ) is a
Fredholm operator with positive index. So D \ F, (T) is dominating
for T and it follows from [4, Theorem 6.2] that T € A n,. If m > 2, we
note that A; may be void and we can consider X = H&M2®---dM,,
as a semi-invariant subspace for 7(™). If we put

(2.2) T=T®Tm, ® - ®Tr,,,

then T is unitarily equivalent to the compression (T(™)). Since T has
T as a direct summand, we have T € A. Thus it is sufficient to show that
T e A4 x,(K). Furthermore, it follows from the proof of (5, Theorem
3.1] that for every A € A, there exists a sequence of unit vectors {z)}32,
from X such that

(2.3a) l[Cxlz — [en ® 23]7ll = 0 (n — o0),

and

(2.3b) Iz ® w7l — 0 (n — o0),

for all w € K. Thus, by [4, Theorem 6.2}, T € A} x,. a

The following is an improvement of [5, Theorem 3.7].

LEMMA 2.2. Suppose that T € Co. N A(H). If (6 (T)ND)U (D \
F.'(T)) is dominating for T, then T € Ay,. Therefore (Co. N A1 x,) U
(C.() N ANO,I) C ARQ-

730



Singly generated dual operator algebras

Proof. By [4, Theorem 6.2], we have T € A;x,. Since T € Cp., it
follows from [5, Proposition 2.7] that T’ € Ay,. O

C. Apostol, H. Bercovici, C. Foias and C. Pearcy [2] characterized
subnormal operators in A N Cpg. The following theorem is a generaliza-
tion of their result.

THEOREM 2.3. If T is a hyponormal operator in Cy.(H), then the
following two conditions are equivalent:
(i) T € A,
(ii) T e ANO-
In particular, if T is a subnormal operator, then each of (i) and (ii) is
equivalent to
(iii) o(T) N D is dominating for T.

Proof. If T is a hyponormal operator, then F, (T is an empty set.
By (4, Theorem 6.2], we have T' € A ,. Hence it follows from Lemma
2.2 that (i) implies (ii). On the other hand, obviously (ii) implies (i).

Under the hypothesis of the second part, it is also obvious from (2,
Proposition 4.6] that (iii) implies (i). Now it remains to show that (i)
implies (iii). Let N be the minimal normal extension of T acting on
a Hilbert space X D H. According to (8, Propositions III 2.4 and III
2.11], we have

o0
(2.4) K=\/ N*#
k=0

and o(N) C o(T). By [8, Proposition III 4.7], we have

(2:5) p(N) =lm||N"||= = IN]| < p(T) <1,

where p(N) is the spectral radius of N. Hence N is a contraction
operator. To show that X C {z € K : |[N"z|| — 0}, let us take
N*heKforheHanda nonnegative integer k. Then since T € Cy.,
we have

(2.6) |[N"N**R| = |[N**N"h|| < |[N"h|| = |T"h|| — 0 (n — o).
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Moreover, since {x € K : ||N™z| — 0} is a subspace of K, we have
K c {z e KL:|N"z| — 0}. Therefore N € Cp. N A(K). Hence N is
a completely nonunitary contraction satisfying ||f(N)|| = ||flleo, for
all f € H*. Now, according to the usual proof in the theory of dual
algebras (cf. (2]), we can obtain

(2.7) [F (V)| = supaco(myrplF(N)], for all feH™.
Hence o(N) N D is dominating for T (cf. [2, Definition 4.5]). Since
o(N) C o(T), the proof is completed. O

Recall from [7] (or [11]) that, for every [L] € Qr and every s > 1,
there exist square summable sequences {z,}32; and {y,}32; in H such
that

(2.8) L] =3 [zn @y,
n=1
(2.9a) > llzall? < slL]]
n=1
and
(2.9b) > llyall® < sl[L]]l-
n=1

THEOREM 2.4. Let T be an absolutely continuous contraction in
A(H). Let U} be an isometric dilation of T acting on a Hilbert space
K. Assume that

oo
k
(2.10) AN VA /AT /2
k=1
for some y in H=HOHD . Suppose that ‘H is a hyperinvariant
subspace for Uf". Then T € N3 1A »(1).
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Proof. For any n € N, it is sufficient to show that T* € A, 1(1).
Suppose that ¢; is a weak*-continuous linear functional on Ar- and
s>1,1<i<n. By(2.8)and (2.9a,b), there exist sequences {xfj)}z‘;l
and {y,(:)},‘;?__l in H satisfying

(2.11) pi(A) = Z(Axff),yk

for all 4 in Ap. such that

[ o]
(212) 1012 < sl
k=1
and
(2.13) Z I I < sl
Let
(2.14a) K=kVa okVeokPe. - - 0kMo- -,
(n) (n)
(i-1) (i~1)
(2.14b) D =(,-.-,0,2",---,0,0,---,0,z,---,0,--+)
(n) (n)
and
(2140) (y(l) : 7y§n):y§1)7 ’ ,ygﬂi,_“)’
() (n)

where IC,(:) =K, 1 <i<n, k€ N. For brevity, we let

(2.15) M=\/ U*y,
k=1
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where U := U; (c0), By the hypotheses, there exists an isometry W
from K into K such that WK = M and

(2.16) WU} = UW.

Let T, ,Si) = P ;W , where Py ; is the projection from K onto IC,(:) . Then,
clearly, T,g’) € L(K) and for every z € K we have
211 Wwz=T{ze - oTVzel'ze oT{ze
(n) (n)
It follows from (2.16) that

(2.18) TOUF = Ut

for any k,i. Let yo = W*§. Then T\” yo = Py;7 =y for any k € N,
1 <4 £ n. Furthermore, by (2.13) we have

n
(2.19) lyoll? = 111> = ZZ 212 < 5D sl

i=1 k=1 i=1
By (2.17) we have

0
(220) (W'E9,z) = @D, W2) = 3 (e, T2) Z(T“’* 9, 2)
k=1

for every z € K and we can assert that the series 350, T\)*z() con-

verges weakly to some :c( )( W*z®) € K, 1 < i < n. Now by (2.12)
we have

(2.21) =617 = 1591 = Z =i 17 < sleill-
Since H is a hyperinvariant subspace for Uqf "

(2.22) TN cH
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by (2.18). Hence we have x(()i) €H. Nowforeveryne N, 1 <i<mn,
we have

(2.23)
m . . w . .
(Pi(T*n) - Z(T*nxl(:)’yl(:)) _ Z(T*nl';:),T;gz)yo)
k=1 k=1
ot n . . e .\ % n .
_ Z(U;‘— xgcz)’Tk(:z)yO) — Z(Tk(:z) U; II)S),yO)
k=1 k=1
bt n .y %k . b .\ K .
=S WF TP 2P, p0) = Y (T 2P, 90) by (2.22)
w . . Ry
= (T*n Z Tlgz)*xl(cz)’ yo) = (T*nw(()z)’y())
k=1

= (T*":c(()i),P%yo), since z(()i) eH,

i=1,2,--- ,n, so that ¢;(A) = (Ax((,i), Pyyo) for any A € Ap-. Hence
T* € A, 1(1). ]

Note that the unilateral shift operator S of multiplicity n and
multiplication operator Mr on L?(T"), I’ C T, satisfy the hypotheses of
Theorem 2.4. In particular, if we consider a Jordan block S(6) which
will be defined in the next section, and if we follow the proof of Theorem
2.4, then Ag ) has property (A; ) for any n € N.

3. Examples

For 1 < p < 0o we write HP = HP(T) for the usual Hardy space.
Let us recall that a completely nonunitary contraction T € L(H) is
to be of class Cj if there exists a non-zero function u € H*°(T) such
that (under the functional calculus) u(T) = 0 (cf. [12]). Let S be the
unilateral shift of multiplicity one. Then the function S(#) defined by
S(0) = (S*|(H? © §H?))*, for an inner function 8, is called a Jordan
block and that any operator of the form S(8;)®S(62)®---®S(0x)®SY,
where 8;,60,, - - , 0 are nonconstant (scalar valued) inner functions and
0<k<o0, 0<I<o00,is called a Jordan operator (cf. [9], [10]).
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We start this section from the following theorem which is an im-
provement of [10, Corollary 4.8].

THEOREM 3.1. Suppose that T € A(#H) and 1 < m,n < Ry. Then
the following statements are equivalent:
(i) TeApn(H),
(i) T® A€ Apn(HDK) for any A € Cy(K),
(i) T® A € A n(H & K) for some A € Cy(K).

Proof. 1t is sufficient to show that (iii) => (i). Assume that T® A €
A, , for some A € Cy. Let 0 be an inner function with (A) = 0. To
show that T € A, », let us consider an m x n system {[L zJ]}1<.<<m

in Qr and let [I;;] be the corresponding system in L} /HO such that
¢7([Li;]) = [li;]. Consider OZU € L', where 6(ei) = B(e—*). Since
T :=T®A € A, p, there exist two vectors u; = u; ®u} and v; = vjea'v]
in H @ K such that ¢z ((0L;;]) = @ ®;], 1 <i <m, 1 <j < n. Then,
for any h € H*, we have

5 [ sk dm = (h, B3 = (), 671 (@1s)) = (WD), )
= (h(T)us,v5) + (M(A)ui,vi) = (R(T)wi, v5).

Now we replace h by h in (3.1), and we have

(), (L) = (b (Lish) = (b 1) = [ 1 am,
- / Li;h|0PPdm since [8(e™)| = 1 a.e.
(32) - / (81;)(6R)dm
= ((6h)(TYus, v5) + (Bh(A)ulyv}) by (3.)

= (0(T)A(T)wi, v;) = (R(T)O(T)us),v5)
= (A(T), [0(T)us ® vj]r),

so that [Li]r = [0(T)u; @ vjlr, 1<i<m, 1<j<n. O
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The Cy-operator A in the above theorem didn’t play any role for
properties (Ap, »(1)). However, it is well-known that the singly gener-
ated dual algebra Ag() has some property (A; ;). If 6y = --- = 6y,
n € N, then we obtain an interesting result as the following Proposition
3.3. However, if § # ¢, in general the dual algebra Ag(g)gps(er) doesn’t
always have property (A2(1)) (see Example 3.5).

The following corollary results from the proof of Theorem 2.4.

COROLLARY 3.2. For an inner function § and any m € N, the dual
algebra Ag(g) has property (A1 (1)) and property (Ap, 1(1)).

Proof. Since U ;(0) is unitarily equivalent to a unilateral shift S of
multiplicity one, every nonzero vector in K is an invariant ampliation
for U ;.'(0) itself. Furthermore, it is well-known that the acting space of

S(0) is a hyperinvariant subspace for S*. Hence the proof of Theorem
2.4 applies to prove this corollary. O

PROPOSITION 3.3. If Ar has property (A1,m(1)) (or (Am,1) resp.),
n,m € N, then Ay, has property (A, m(1)) (or (Am n) resp.).

Proof. Suppose that ;; is a weak*-continuous functional on Ap)
ands>1,1<i<n, 1<j<m. Define

(3.3) $ij(A) = pi;(A™)

for Ae A7, 1 <i<n, 1<j<m. Then ¢; is a weak*-continuous
functional on Az. Since Ar has property (A1,.(1)), for every s > 1
there exist z; € H and {yﬁ-z)}lgjgm in ‘H such that ¢;; = z; ® yJ(-Z),

m
(3.4a) lzl> <) lldisl, 1<i<n
i=1
and
(3.4b) ly$212 < sllgisll, 1<i<n, 1<j<m.
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Now we set
(473
(358‘) @2(6,,0,(0“0,3, 1Sl_<_n,
N— —
(%)
and
(2)
(3.5b) Ui = Y15, Yijo " Unj), 1<j<m.
L.

(1)
Then it is easy to show that ¢;; = Z; ®y; on Apm), for1 <i<n, 1<
Jj<m

m
(3.6a) 102 = llaill® < 8 llessl
=1
and
(3.6b) 1502 =D llwish® < 8D llessl-
i=1 i=1
Hence the dual algebra Ap.) has property (A (1)) 0

The following result is an immediate consequence of Corollary 3.2
and Proposition 3.3.

THEOREM 3.4. If T = S(6)™, n € N, then Ar has property
(An,m (1)) and property (Am n(1)) for any m € N.
Now we provide the example mentioned earlier as follows:
EXAMPLE 3.5. Let ¢, = e¢'™*. Then it follows easily that
0 1
0 1 O
(3.7 S(pn) = RS
O IR |
0

relative to C™. If m # n, the dual algebra Ag(,,)gs(y,,) doesn’t have
property (A;). For example, Ag(,,) and Ag(,,) have properties (A1)
and (A, 1) for any m € N, but not property (A22) (cf. [1, p. 321]).
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COROLLARY 3.6. For k € N, if 6; is an inner function, i =1,--- |k,
then Ag(s,)e.-@s(6,) has property (A1,,(1)) and property (A, 1(1)).

Proof. Since Agg,)@...@5(6,) 18 contained in Agg,) ® - -+ & Asg(s,)

which has property (A »(1)), it has property (A; »(1)). O
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