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ON THE EXISTENCE OF SOLUTIONS OF THE
HEAT EQUATION FOR HARMONIC MAP

DonG Pyo CHi, HyuN JunGg KiM*, AND WoON KUK KM

ABSTRACT. In this paper, we prove the existence of solutions of
the heat equation for harmonic map on a compact manifold with
a boundary when the target manifold is allowed to have positively
curved parts.

1. Introduction

Let (M, f) and (N, ~) be Riemannian manifolds of dimension m and
n respectively. Let {z>}7_, and {y°}"., be the local coordinates of M
and N, respectively, and let f be defined by f = Zaﬁ faﬂda:"d:re’ in
this local expression.

Let u : M x [0,00) — N be a map which is represented as u =
(ul,...,u™) in terms of the above local coordinates. We say u satisfies
the heat equation for harmonic maps if it is a solution of the following
nonlinear parabolic system:

. J uk
(& - 2@, 1) = @ e, ) 22 (2,2 (2,),

for i = 1,...,n, where (f*%) = (fap)™' and I'%;(y) is the Christoffel
symbol at y in N.

Let A = (M x {0}) U (0M x [0,00)), and Ar = (M x {0}) U (OM x
[0,T)), for all T > 0. Let ¢y : A — N be a given map. The boundary
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value problem of the heat equation for harmonic map is to find a map
u: M x [0,00) — N which satisfies

(1.1)
U] k
(8~ 2@, 0) = £ ()T (e 1)) o (2,) o (2,1

ozB
ul|a(z,t) = Y(z, 1),

fori=1,...,n.

The heat equation for harmonic map has been investigated by many
mathematicians for many years. Eells and Sampson proved the exis-
tence of the unique solution of (1.1) when the domain manifold is a
compact manifold without boundary [5]. R. Hamilton proved it for the
case when the domain manifold is a compact manifold with boundary,
but he dealt with only the case when the target manifold is negatively
curved [7]. W. Kendall showed the existence problem of solutions of the
heat equation for harmonic map when the target manifold has positive
curvature parts and the domain manifold is a compact manifold with
boundary in a similar fashion as R. Hamilton’s [10]. He proved it using
not the analytic method, which was used in [5] and [7], but the prob-
abilistic method. The goal of this paper is to give an analytic proof
of the same results of W. Kendall. And our domain manifold is the
same as Hamilton’s but the target manifold is different, so our method
of proof is different from it. We get the solution of (1.1) by applying
the Leray-Schauder degree theory to the nonlinear parabolic system.
The main idea of proof comes from the proof in [8], but we get the
gradient estimate of the solution of (1.1), which is the important part
of the proof in using the Leray Schauder degree theory, in a different
way. Hilderbrandt et al. [8] used the distance function on N from a
fixed point as a convex function on IV, because the target manifold N
is only nonpositively curved. Since our target manifold N is allowed to
have positive curvature parts as well, we need to define a new convex
function instead of the distance function.

We would like to thank Professor Hyeong In Choi, who helped us to
use Leray-Scauder degree theory.
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2. Preliminaries

Suppose that (N,v) is a Riemannian manifold with the sectional
curvature bounded above by a positive constant K > 0. Without loss
of generality, we set K = 1. Let ¢ € N be given and B,(q) is the
geodesic ball with raius 7 < min{Z, 7} and center g, and where 7 is the
injectivity radius at g. Then B,(q) is diffeomorphic to a Euclidean ball
in R™ with center 0 = (0, ...,0) and radius r, the diffeomorphism being
given by any normal coordinate system at g. Hence using the normal
coordinates, any map u : M x [0,00) — B,(q) can be represented by
vector valued functions u = (u!,...,u") : M x [0,00) — R™.

Now the notations which will be used through the present paper are
introduced. Choose an orthonormal frame {ea, g—t-} in a neighborhood
of (z,t) € M x [0,00) and a local orthonormal frame {f;} in a neigh-
borhood of u(z,t) € N. Let {6,,dt} and {w;} be the dual coframes of
{ea, &} and {i}, respectively.

Denote d = dp + g;dt is a cannonical differential on M x [0, c0)
where djs is a differential on M. Let us define u;, by

u* (w,-) = Z UiaOo + uspdt.

By taking the covariant derivative of the above equation, we get uing
by

Z Uiap08 + Uiatdt = duiq + Z UjaU*wj; + Z u;g0pa.
B J B8

Since du; = dplia + Uintdt,
Z Uz‘aﬁeﬂ = dpUia + Zujau*wji + Zuweﬁa.
B J B

It is well known that the heat equation for harmonic map (1.1) is equiv-
alent to :
Uit = Uica

fori=1,...,n.
We define the energy function e(u) of u by e(u)(z,t) = Y, v, (z,t).
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For p € B.(q), let us define a function ¢, : N — R by

o,(y) = - — cos p(y, p)

cos p(y, q)
_ L—cospp(y) _. 9(v)
cosps(y)  h(y)

where p € B, (g) and pg, pp are the distance functions from ¢,p on N,
respectively [9].

LEMMA 2.1. ¢, is convex for all p € B,(q). Furthermore, ifu : M x

[0,00) — N is a heat equation for harmonic map with u(M x {0, 00)) C
B,(q), then

(A~ 26y 0u)(x1) > 56p(u(a, D)elu) (a1

%(1 — cos py(u))e(u) (@, ) > 0,

for all (z,t) € M x [0, 00).
Proof. We have

(¢0)i5 = (3)is

h (gijh — gihj — gjhi — ghi;) + 2hgh; h
ha

We can get g;; > cosppd;; and hi; < —cospgdij, on Br(g). Inserting
these into (¢;):;, one can obtain

(60)ss
. h{eos pgdi; + sin pysin pg((pp):(00); + (pa)i(2p)1)}
> o
, 21— cospp)sin® py(po)ilea);

h3

This proves (¢p)ij1,bi1/)j > 0 for all functions ¢ = (¥*) : N — R", which
is the proof of convexity of ¢p.
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Now for the convenience of notation, let g = gou and h = how.
Then since

(A - 2)(g ou)(z,t) > cos pp(u(z,t))e(u(z,t))

ot
and (A — -% (hou)(z,t) < — cos pg(u(z,t))e(u(z, t)),
we can get

(a- g‘;)mou

= A8~ 5o o8~ gom) =T 5 +Z("9a2h39"

> (A~ D)9 —g(a - DR} - S—‘“z—,’:j—)e(u)

hcos pp(u) + g cos pg(u) sin? pp,(u)
> S A

2g — sin? p,(u)
> 27 2 Pl
> Shg e(u)

g 1
= ﬁe(u) > ahe(u).

a

Before we state the main theorem, let us introduce the following
notations. Let ¥y = (y!,...,y™) be normal coordinates at g of B,(g).
Ifu: M x [0,00) — Br(q) C N, u can be written as u = (u!,...,u")
with respect to this normal coordinates. Then the norm |u(z,t)| in R"
is the same as the distance p(u(z,t),q) from ¢ in N. We shall use the
following two kinds of norms

llullcs, = sup |u(z,t)|+ sup |Du(z,t)],
Mx[0,T)

, Mx[0,T]
|Dyu(z,t) — Dyu(c’, t)]
ull ~ave = llullor +  su
Iulloges = llcy + sup P00
lu(z, t) — u(z,t')|
+ tie 4
Mx[0,T] [t —¢|
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where y(z, z’) is the distance between  and 2’ on M, for 0 < ¢ < 1 and
0 < T < 0o. These are defined in the usual manner, using an arbitrary,
but fixed, finite atlas of M. These two different atlases yield equivalent
norms.

3. Gradient estimate and existence theorem

For any given C'*< function % : A — B,.(gq) C N, we consider the
following system:

i of Ouk
(8- 2yui(a,t) = FP@D e ) 22 (2,02 2),

’U.lA(iII,t) = z,b(:c,t),
fori=1,...,n.
First, we have to get the C1— estimate of the solution of (1.1) in
order to use the Leray-Schauder degree theory. C°— estimate of the
solution of (1.1) and interior estimate of energy of the solution of (1.1)

can be easily obtained by the same method as that in {2]. The boundary
estimate of energy is obtained by a modification of the proof in (8].

THEOREM 3.1. Suppose 1 : A — B,(q) is of class C'*° and u is a
solution of (1.1), where ¢ > 0. Then for all T > 0,

”u“C,}‘*"" S C,

where C depends only on ||¢I|C3r+c and the geometries of M and N.

Proof. First, we have to claim that u(M x [0,00)) C B-(p), that is
a C%—estimate of u.
As the same in Lemma 2.1, define g(z,t) : M x [0,00) — R by

g(z,t) = 1 — cos(p(u(z,t),p))-

Then
(A - —)g(z t) > cos pp(u(z, t))e(u(z,t)) > 0.
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Since u(A) = ¥(A) C B,(p), we can get g|a(z,t) < 1 — cos7. Then
by the maximum principle, we have g(z,t) < 1 — cos7. Therefore
cos(p(u(z,t),p)) > cost, which implies that u(z,t) € B,(p) for all
(z,t) € M x [0,00).

Let zp € M be any point and a > 0. Let v be the distance function
from o in M and let By(zo) be the closed geodesic ball of radius a and
center xp in M.Take any T' > 0. Let sup, g(z,t) = b;. We can choose
a constant b > 0 such that sup s« o0) 9(,t) < by <b.

Let us consider the function

= {5

which is defined on (B,(z¢) N M) x [0, 7.
Since ®|0B, (o) = 0, ® attains its maximum on (B, (zo)NM)x [0, T].

Let 9 o\o
max {(a —7)6(U)}_
(Ba(20)NM)x[0,T] (b—g?)?

Then we can have the three cases : (z1,t1) € Bg(xo) x {0}, (Ba(xo) —
OM) x (0,T] or (Ba(zo) NOM) x (0,T].
In the first case, i.e.(z1,t1) € B,(zo) x {0},

(a® — 7%)%e(u) (a® —v%)%e(u)

<I>(:L'1, tl) =

(b—g)2 ($7t) < (b—g)2 (1'1,t1)
a
> W sup (%),
for (z,t) € Ba(zo) x [0,T]. Then we have, for (z,t) € Bg(zo) x [0, T],
4
(3.1) e(u)(z,t) < 196 (b_b—bl)—Q sup e(¢).

In the second case, i.e. when (z1,t1) € Ba(zo) % (0,T), by a similar
computations as in [1], we have

e(u)(z1,t1)

128~2 Ci(1 b— 8v2(b—
g4max{(—a2—~%)—2, (b—g)+ 1((;2:1)»(,2) g)+ H}
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For any (z,t) € Ba(zo) x (0,T],
{ (a® —7%)%e(u) } { (a® — 7*)?e(u) }
A (1, t) < e b (21, 1)

(b-g)? (b—9)?
1642
54‘“‘”‘{<b—g<x1,t1>>2 !
a? C1(1 + a)a? 8a? }
(b—g(z1,t1))  (b—g(z1,t1)) (b—g(z1,t1))2 f
Therefore
e(u)(z, 1)
256b2
(3g) ~ SAmex { 9(b — by )22 ’
16Kb2  16C1(1 + VKa)b® 12852
9(b — by) 9a2(b — by) +9a2(b—b1)}’

for (27, t) € B% (.’L'()) X (OT]

We consider the last case (z1,t1) € OM x [0,T]. Let n be the outer
normal vector of OM at (z1,t1), and p = u(z1,t1). Since u(z,t) =
(z,t) for all (z,t) € Ar, e(u)(zr, t1) < CLlllpllEy + 1182112, 0y, for
the same constant C; depending only on the geometries of M and N.
Hence it suffices to get the estimate of ||§%H (z1,t1)"

One can choose a sufficiently small § > 0 such that 1 — 2sin% >0,

and let pp € N be a point on the geodesic in the direction %%kml,tl)
with p,(po) = 8. Define

w(z,t) = ¢p(u(z,t)) + —;—{1 — cos p(u(z,t),po)} — n,

where ¢, is as defined in Section 2 and 7 is the solution of the following
linear heat equation with boundary condition:

o}
(A - E)n = Oa
_ 1 —cospp(¥) 1.
77'AT it COSpq('l/)) + 2{1 COSP(i/J,Po)}'
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The well-known Schauder estimate for the partial differential equa-
tions of parabolic type implies ||n||cz < C({|#] C;:l—c). Applying Lemma
2.1, we can easily get

(A~ 2w > 2{1 - cas py(u) +cos plu, po)}e(u)

_1 {1 - o 20 ) g o0~ pl)

Mlv—l o |

(1 - 2sin —-)e(u) >0,

where the last inequality comes from the fact that p,(u) — p(u,pp) <
Pp(Po) < 6 ie. w is a subsolution of linear heat equation. By the easy

computation, %I(xhtl)d)p(u(z’t)) =0.
Since w|a, = 0 and

0 .o OU
é—n'l(fﬂx,tx)(l - cosp(u(:c,t),po)) = _Sln(s”%“(l‘l,tl)’

we get

ow 677
0< a_n-l(:m,h) sm5|| ”(zhtl) I(z"t‘)

Ou
128 ) < gl ol < o 5||n||01 < Coligllgse,

for some constant C; depending only on § and the geometries of M and
N.
We have by the above computation (3.1) and (3.2),

b2 256b%
< -
e(u)(z,t) < 4max { T IThh supe(zb), S — By
164 wqu+@w
962 —b2) © 9a2(b? - B3)

128b*
TGk C2||¢||cl+c}
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for (x,t) € Bg(xo) x (0.T).
Since a is arbitrary, as a goes to infinity, we have

sup e(u) < Cs,
Mx[0,T)

for C3 depends only on ||| cire and the geometries of M and N. O

Let y = (¥*,...,y™) be normal coordinates at g of B,(q), and let
hi; be the metric of N with respect to this normal coordinates. For
0 < s < 1, let us define a new metric *v;;(y) = ~ij(sy). Note that
ly;; = v:; and %v;; is a flat metric on B,(g). Furthermore, since there is
no change of metric in the radial direction, y is still a normal coordinates
for the metric *h;;. The Christoffel symbol °T, (y) with respect to the
metric *y is sI'%(sy), and the heat equation for harmonic map with
°h;; on the target becomes

(H,)
(&~ Dyt t) + 1720, s ous(o, ) 25 2, ) 2e (0,) =
us(z,t) = P(z,t), (z,t) € A,

Note that the solution of (H;) is the solution of (1.1). To prove the
main theorem, it is important to get the energy estimate of u, inde-
pendent of s. It is easy to check that the upper bound of the sectional
curvaturre with repect to *h is the same as that with repect to h. We
can get the following theorem.

THEOREM 3.2. Suppose for all 0 < s < 1,9 : A — B,(q) is of class
C'*¢ and u, is a solution of (H,). Then for all T > 0,

llullgye < C,

where C depends only on ||| cLre and the geometries of M and N.

Now we prove the existence of solutions of the heat equation for
harmonic map using Leray-Schauder degree theory.
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THEOREM 3.3. Let (M, f) be a Riemannian manifold with boundary
OM and let (N,~) be a Riemannian manifold with the sectional curva-
ture bounded above by K > 0. Let A = (M x {0}) U (0M x [0, 00)).
To a given C1*¢ function ¢ : A — B,(q), there exists the solution
u: M x [0,00) — B,(g) of (1.1) in class C® on M x [0,00) and C* on
A.

Proof. Without loss generality, we may assume K = 1. To apply the
Leray-Schauder degree theory, we need an appropriate Banach space,
a bounded domain of the Banach space and a homotopy of maps. Let
T > 0 be fixed.

First let us define the space B by the set of all C! maps from M x
[0,T) to R™. Then clearly (B, ||-]|) becomes a Banach space, where ||-||
is the C}—norm.

Now, we define a homotopy of maps. Let 0 < s < 1. For u =
(ul,...,u") € B, define

s 1 au’ 6"’
Fiw)= Y sTh(swf? 522,
j’k’a1ﬂ

foralli=1,...,n.
Define ¥, : B — B by ¥,(u) := v = (v},...,v"), where v is the
solution of the following linear heat equation with boundary condition:

(A - g—-)vi(z,t) = *F(u)(z,t) on M x [0,00), vjpa=0
foralli=1,...,n

For u € B, ¥(u) is of class C1*# for some 0 < 3 < 1 (see [6]), and
Arzela-Ascoli theorem implies that ¥ is a compact mapping from B

into B. Now let A = h(¢) be the uniquely determined solution of the
boundary value problem of the linear equation

(A - ——)h(a: t)=0 on M x[0,00), hin =1
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Let us define a homotopy H, : B — B as follows,
Hy(u) = u— ¥4(u) — h.

By Theorem 3.2, there is a constant C4 depending only on ||¢HC;+c
and the geometries of M and N such that ||us||cz < C4, for all the so-
lution u of (H,), where Cy is independent of s. Let D = {u € B]| ||u|| <
2C4}. Here the degree of H; is calculated with respect to the set D and
the element 0 € B. Note that for all 0 < s < 1, any solution us of
H,(u) = 0 is the solution of (H,) on M x [0,T}], which is in D and

sup e(us) < Cy,
Mx[0,T)

as above. And for all 0 < s <1, u, ¢ 9D, from which deg(H,, D, 0) is
well-defined and is finite. Since ¥ = 0, a solution of Hop(u) = 0 is a so-
lution of linear heat equation with ¥ on the bondary A, deg(Hg, D, 0) #
0. Then the homotopy invariance of degree implies that deg(H, D,0) #
0. Since H; *(0) is not nonempty set, Hj(u) = 0 has the solution u € D
that is the harmonic map for heat equation on M x [0,T).

Since T > 0 is arbitrary and the solution of (1.1) on M x [0,T] is
unique (see Section 4 of IV in [7]), we can obtain a unique solution of
(1.1) on M x [0,00). O
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