CLIFFORD L²-COHOMOLOGY ON THE COMPLETE KÄHLER MANIFOLDS II

EUN SOOK BANG, SEOUNG DAL JUNG AND JIN SUK PAK

ABSTRACT. In this paper, we prove that on the complete Kähler manifold, if $\rho(x) \geq -\frac{1}{2}\lambda_0$ and either $\rho(x_0) > -\frac{1}{2}\lambda_0$ at some point x_0 or $Vol(M) = \infty$, then the Clifford L^2 -cohomology group $L^2\mathcal{H}^*(M,S)$ is trivial, where $\rho(x)$ is the least eigenvalue of $\mathcal{R}_x + \bar{\mathcal{R}}(x)$ and λ_0 is the infimum of the spectrum of the Laplacian acting on L^2 - functions on M.

0. One of the important object in the study of a manifold is its Clifford algebra Cl(M), generated by the tangent space. It carries an intrinsic first order elliptic operator D, which is called the Dirac operator. There is a canonical vector (but not algebra) bundle isomorphism $\Lambda^*(M) \to Cl(M)$, where $\Lambda^*(M)$ is an exterior algebra of M. In $\Lambda^*(M)$, the Dirac operator D is $D \cong d + \delta$ and the Laplace operator is the square of the Dirac operator, where d is the exterior differential and δ is the adjoint operator of d. Therefore many results of the Clifford theory yield the results of the de Rham theory ([8]). In 1980, M. L. Michelsohn ([10]) proved many results for the Dirac operator on compact Kähler manifold. Recently, J. S. Pak and S. D. Jung ([11]) extended the results of M. L. Michelsohn ([10]) and obtained the following theorem for the Dirac operator on complete Kähler manifold.

THEOREM A. Let M be a complete Kähler manifold and S be any hermitian vector bundle of modules over $\mathbb{C}l(M)$. If R is non-negative and positive at some point of M, then the Clifford L^2 -cohomology group

Received March 9, 1998.

¹⁹⁹¹ Mathematics Subject Classification: 53A50.

Key words and phrases: Clifford algebra, Clifford L^2 -cohomology group, L^2 -harmonic spinors, Dirac operator, spinor bundle.

This paper was supported by Development Fund of Cheju National University, 1997 and TGRC-KOSEF.

is trivial, where R is the symmetric endomorphism of S containing the curvature data.

In this paper, we prove Theorem A under the assumption of weaker curvature endomorphism R which is bounded by $-\frac{1}{2}\lambda_0$ from below, λ_0 is the infimum of the spectrum of the positive Laplacian Δ^M acting on L^2 -functions on M. The method of this study is based on that of P. Bérard ([2]). From our results, we deduce the vanishing theorem for the harmonic forms which extend the results of K. D. Elworthy and S. Rosenberg ([4]) to the Kähler case. Also, we study the harmonic spinors under some condition of the scalar curvature.

1. Let M be a 2n-dimensional Kähler manifold with almost complex structure J and with connection ∇ . Let Cl(M) be the Clifford bundle generated by the tangent bundle TM. Now we define a derivation $\mathcal{J}_0: Cl(M) \to Cl(M)$ induced by J as follows:

(1.1)
$$\mathcal{J}_0(v_1 \cdots v_k) = \sum_{j=1}^k v_1 \cdots J v_j \cdots v_k$$

for $v_1, \dots, v_k \in TM$, where "·" is the Clifford multiplication. If it is clear from the context which multiplication is meant, we omit the Clifford multiplication "·". To study \mathcal{J}_0 effectively we consider the complexification $\mathbb{C}l(M) = Cl(M) \otimes_{\mathbb{R}} \mathbb{C}$. This algebra has a natural basis given as follows: Let $e_1, \dots, e_n, Je_1, \dots, Je_n$ be an orthonormal basis of T_xM . Let $T_x^{1,0}$ (resp. $T_x^{0,1}$) be the i eigenspace (resp. -i eigenspace) of J in $T_xM \otimes \mathbb{C}$. Put

$$\xi_k = \frac{1}{2} \{e_k - iJe_k\}, \quad \bar{\xi}_k = \frac{1}{2} \{e_k + iJe_k\}.$$

Then ξ_1, \dots, ξ_n (resp. $\bar{\xi}_1, \dots, \bar{\xi}_n$) is the basis of $T_x^{1,0}$ (resp. $T_x^{0,1}$). And $\{\xi_k, \bar{\xi}_k\}$ has the following properties;

$$(1.2) \ \xi_k \bar{\xi}_\ell + \bar{\xi}_k \xi_\ell = \xi_k \bar{\xi}_\ell + \bar{\xi}_\ell \xi_k = -\delta_{k\ell}, \quad \xi_k \xi_\ell = -\xi_\ell \xi_k, \quad \bar{\xi}_k \bar{\xi}_\ell = -\bar{\xi}_\ell \bar{\xi}_k.$$

Denote $\xi_K \bar{\xi}_I = \xi_{k_1} \cdots \xi_{k_r} \bar{\xi}_{i_1} \cdots \bar{\xi}_{i_s}$, where K and I range over all strictly ascending multiindices from $\{1, \cdots, n\}$. For convenience we set $\mathcal{J} = \frac{1}{i} \mathcal{J}_0$. Then by the derivation property, we have

(1.3)
$$\mathcal{J}(\xi_K \bar{\xi}_I) = (|K| - |I|)\xi_K \bar{\xi}_I,$$

where |K|, |I| denote the lengths of K and I. This gives a decomposition

$$\mathbb{C}l(M) = \bigoplus_{p=-n}^{n} \mathbb{C}l^{p}(M),$$

where $\mathbb{C}l^p(M) = \{ \phi \in \mathbb{C}l(M) \mid \mathcal{J}\phi = p\phi \}.$

We now introduce two intrinsically defined linear maps $\mathcal{L}, \bar{\mathcal{L}} : \mathbb{C}l(M) \to \mathbb{C}l(M)$ as follows; For any $\varphi \in \mathbb{C}l(M)$, set

(1.4)
$$\mathcal{L}(\varphi) = -\sum_{k=1}^{n} \xi_k \varphi \bar{\xi}_k, \quad \bar{\mathcal{L}}(\varphi) = -\sum_{k=1}^{n} \bar{\xi}_k \varphi \xi_k.$$

These operators are independent of the Hermitian basis chosen to define them. We consider the operator $\mathcal{H} = [\mathcal{L}, \bar{\mathcal{L}}]$. Then they satisfy the following relations;

$$(1.5) [\mathcal{L}, \bar{\mathcal{L}}] = \mathcal{H}, [\mathcal{H}, \mathcal{L}] = 2\mathcal{L}, [\mathcal{H}, \bar{\mathcal{L}}] = -2\bar{\mathcal{L}}.$$

Hence they define a representation of $s\ell(2,\mathbb{C})$, the Lie algebra of $SL(2,\mathbb{C})$ on $\mathbb{C}l(M)$. Since each of the operators $\mathcal{L}, \bar{\mathcal{L}}$ and \mathcal{H} commutes with \mathcal{J} , we can define the subspaces

$$\mathbb{C}l^{p,q}(M) = \{ \varphi \in \mathbb{C}l(M) \mid \mathcal{H}\varphi = q\varphi, \ \mathcal{J} = p\varphi \}$$

and obtain a decomposition ([10])

(1.6)
$$\mathbb{C}l(M) = \bigoplus_{p,q} \mathbb{C}l^{p,q}(M).$$

Eun Sook Bang, Seoung Dal Jung and Jin Suk Pak

PROPOSITION 1.1 ([10]). For each $\xi \in T^{1,0}(M)$, one has that $\xi \cdot \mathbb{C}l^{p,q} \subseteq \mathbb{C}l^{p+1,q+1}$ and $\xi \cdot \mathbb{C}l^{p,q} \subseteq \mathbb{C}l^{p-1,q-1}$. Furthermore, if $\xi \neq 0$, the sequences

$$\cdots \xrightarrow{\lambda_{\xi}} \mathbb{C}l^{p-1,q-1} \xrightarrow{\lambda_{\xi}} \mathbb{C}l^{p,q} \xrightarrow{\lambda_{\xi}} \mathbb{C}l^{p+1,q+1} \longrightarrow \cdots$$

$$\cdots \xleftarrow{\lambda_{\bar{\xi}}} \mathbb{C}l^{p-1,q-1} \xleftarrow{\lambda_{\bar{\xi}}} \mathbb{C}l^{p,q} \xleftarrow{\lambda_{\bar{\xi}}} \mathbb{C}l^{p+1,q+1} \longleftarrow \cdots$$

where λ_{ξ} denotes left Clifford multiplication by ξ , are exact.

2. Suppose that M is a complete Kähler manifold. We introduce two differential operators $\mathcal{D}, \bar{\mathcal{D}}: \Gamma \mathbb{C}l(M) \to \Gamma \mathbb{C}l(M)$ by the formulas

(2.1)
$$\mathcal{D} = \sum_{j} \xi_{j} \nabla_{\bar{\xi}_{j}}, \quad \bar{\mathcal{D}} = \sum_{j} \bar{\xi}_{j} \nabla_{\xi_{j}},$$

where ∇ is the canonical connection. Since ∇ preserves the subbundles $\Gamma \mathbb{C}l^{p,q}(M)$, we have

$$\mathcal{D}(\Gamma \mathbb{C}l^{p,q}) \subset \Gamma \mathbb{C}l^{p+1,q+1}, \quad \bar{\mathcal{D}}(\Gamma \mathbb{C}l^{p,q}) \subset \Gamma \mathbb{C}l^{p-1,q-1}$$

for all p and q. Then we have the following well known fact:

THEOREM 2.1 ([10]). The operators \mathcal{D} and $\bar{\mathcal{D}}$ are formal adjoints of one another on $\Gamma_{cpt}\mathbb{C}l(M)$, the set of all sections with the compact support. And they satisfy

$$\mathcal{D}^2 = \bar{\mathcal{D}}^2 = 0.$$

Furthermore, the complex

$$\cdots \xrightarrow{\mathcal{D}} \Gamma \mathbb{C}^{p-1,q-1} \xrightarrow{\mathcal{D}} \Gamma \mathbb{C}^{p,q} \xrightarrow{\mathcal{D}} \Gamma \mathbb{C}^{p+1,q+1} \xrightarrow{\mathcal{D}} \cdots$$

is elliptic.

Now we set

$$\Delta := \mathcal{D}\bar{\mathcal{D}} + \bar{\mathcal{D}}\mathcal{D}.$$

Then Δ is a formally self-adjoint elliptic operator. To understand Δ we introduce two "real" operators on $\mathbb{C}l(M)$:
(2.3)

$$\stackrel{'}{D} = \sum_{j} \{e_{j} \nabla_{e_{j}} + (Je_{j}) \nabla_{Je_{j}}\}, \quad D^{c} = \sum_{j} \{e_{j} \nabla_{Je_{j}} - (Je_{j}) \nabla_{e_{j}}\}.$$

The first operator is called the *Dirac operator*. Then we can easily see that

(2.4)
$$\mathcal{D} = \frac{1}{4}(D + iD^c), \quad \bar{\mathcal{D}} = \frac{1}{4}(D - iD^c).$$

Since $\mathcal{D}^2=0$, we have that $D^2=(D^c)^2$ and $DD^c+D^cD=0$. It follows that

$$\Delta = \frac{1}{4}D^2.$$

Since D is essentially self-adjoint, we have

$$(2.6) KerD = KerD^2 = Ker\Delta.$$

Now, we consider the usual inner product

(2.7)
$$\langle \langle \varphi_1, \varphi_2 \rangle \rangle = \int_M \langle \varphi_1, \varphi_2 \rangle$$

for any $\varphi_1, \varphi_2 \in \Gamma_{cpt}\mathbb{C}l(M)$. Let $L^2(\mathbb{C}l^{p,q}(M))$ be the completion of $\Gamma_{cpt}\mathbb{C}l^{p,q}$ with respect to $\langle\langle\;,\;\rangle\rangle$. We recall that the operators \mathcal{D} and $\bar{\mathcal{D}}$ are formal adjoint to one another with respect to $\langle\langle\;,\;\rangle\rangle$. Then \mathcal{D} and $\bar{\mathcal{D}}$ have closed extensions in $L^2(\mathbb{C}l^{p,q}(M))$. But since M is complete, their closed extensions are unique ([3]). From now on, we write the closed extensions as the same symbols. Now, we put

$$(2.8) L^2\mathcal{H}^{p,q} := Ker\mathcal{D}/\overline{Im\mathcal{D}} \cap L^2(\mathbb{C}l^{p,q}(M)),$$

$$(2.9) L^2 \hat{\mathcal{H}}^{p,q} := Ker \mathcal{D} \cap Ker \bar{\mathcal{D}} \cap L^2(\mathbb{C}l^{p,q}(M)),$$

$$(2.10) L^2H^{p,q} := Ker\Delta \cap L^2(\mathbb{C}l^{p,q}(M)).$$

Here $L^2\mathcal{H}^{p,q}$ and $L^2H^{p,q}$ are called the Clifford L^2 -cohomology group and L^2 -harmonic space, respectively. Then we have

PROPOSITION 2.2 ([11]). Let M be a complete Kähler manifold. Then we have

$$L^2\mathcal{H}^{p,q}\cong L^2\hat{\mathcal{H}}^{p,q}\cong L^2H^{p,q}.$$

- **3**. Let M be a Kähler manifold and $S \to M$ a hermitian vector bundle of left modules over $\mathbb{C}l(M)$ with a hermitian metric $\langle \ , \ \rangle$ such that:
 - (1) Module multiplication by unit tangent vectors is unitary, i.e.,

$$(3.1) \qquad \langle \xi \cdot \phi, \psi \rangle + \langle \phi, \bar{\xi} \cdot \psi \rangle = 0,$$

for any $\phi, \psi \in \Gamma(S)$ and $\xi \in \Gamma(TM) \otimes \mathbb{C}$

(2) With respect to the canonical hermitian connection, covariant differentiation is a derivation of module multiplication. That is, for $\phi \in \Gamma(\mathbb{C}l(M))$ and $s \in \Gamma(S)$, we have

(3.2)
$$\nabla(\phi \cdot s) = (\nabla \phi) \cdot s + \phi \cdot (\nabla s).$$

Now, we recall some basic results from [10]. For each j, we set $\omega_j = -\xi_j \bar{\xi}_j$, $\bar{\omega}_j = -\bar{\xi}_j \xi_j$. To each (possibly empty) subset $I = \{i_1, \dots, i_p\} \subseteq \{1, \dots, n\}$ with complementary subset $\{j_1, \dots, j_{n-p}\}$ we set $\omega_I = \omega_{i_1} \cdots \omega_{i_p} \bar{\omega}_{j_1} \cdots \bar{\omega}_{j_{n-p}}$ and we denote |I| = p. Then we have

(3.3)
$$1 = \prod_{j=1}^{n} (\omega_j + \bar{\omega}_j) = \sum_{r=1}^{n} \pi_r,$$

where $\pi_r = \sum_{|I|=r} \omega_I$. Moreover, we have an orthogonal decomposition of the bundle

$$(3.4) S = \bigoplus_{r=0}^{n} S^r, S^r = \pi_r \cdot S.$$

Then the complex

$$(3.5) 0 \to \Gamma_{cpt}(S^0) \xrightarrow{\mathcal{D}} \Gamma_{cpt}(S^1) \xrightarrow{\mathcal{D}} \cdots \xrightarrow{\mathcal{D}} \Gamma_{cpt}(S^n) \to 0$$

is elliptic and its completion becomes a Hilbert complex ([3]). Similarly with Proposition 2.2, we have

$$(3.6) L^2\mathcal{H}^r(M,S) \cong L^2\hat{\mathcal{H}}^r(M,S) \cong L^2H^r(M,S).$$

Now, we define invariant operators on $\Gamma(S)$ by

(3.7)
$$\nabla^* \nabla = -\sum_{j} \nabla_{\xi_j, \bar{\xi}_j}, \quad \bar{\nabla}^* \bar{\nabla} = -\sum_{j} \nabla_{\bar{\xi}_j, \xi_j},$$
$$\mathcal{R} = \sum_{j,k} \xi_j \bar{\xi}_k R_{\bar{\xi}_j, \xi_k}, \quad \bar{\mathcal{R}} = \sum_{j,k} \bar{\xi}_j \xi_k R_{\xi_j, \bar{\xi}_k},$$

where $R_{V,W} = \nabla_{V,W} - \nabla_{W,V}$ is the curvature tensor and where $\nabla_{V,W} = \nabla_{V}\nabla_{W} - \nabla_{\nabla_{V}W}$ is the invariant second covariant derivative. Then we obtain

PROPOSITION 3.1 ([10]). For any two sections $s_1, s_2 \in \Gamma(S)$, at least one of which has compact support, the following holds:

$$\int_{M} \langle \nabla^* \nabla s_1, s_2 \rangle = \int_{M} \langle \nabla s_1, \nabla s_2 \rangle,$$

where $\langle \nabla s_1, \nabla s_2 \rangle = \langle \nabla_{\bar{\xi}_i} s_1, \nabla_{\bar{\xi}_i} s_2 \rangle$. Hence $\nabla^* \nabla$ is a formally self adjoint, nonnegative operator. Similarly, this holds for $\bar{\nabla}^* \bar{\nabla}$. Moreover, the zero order operators \mathcal{R} and $\bar{\mathcal{R}}$ are self-adjoint.

By the straight calculation, we obtain the Bochner-Weitzenböck type formula ([10]);

(3.8)
$$\mathcal{D}\bar{\mathcal{D}} + \bar{\mathcal{D}}\mathcal{D} = \nabla^*\nabla + \mathcal{R} = \bar{\nabla}^*\bar{\nabla} + \bar{\mathcal{R}}.$$

From this formula, we have

$$(3.9) 2(\mathcal{D}\bar{\mathcal{D}} + \bar{\mathcal{D}}\mathcal{D}) = \nabla^*\nabla + \bar{\nabla}^*\bar{\nabla} + \mathcal{R} + \bar{\mathcal{R}}.$$

Let $\rho(x)$ denote the least eigenvalue of $R_x (= \mathcal{R}_x + \bar{\mathcal{R}}_x)$, the symmetric endomorphism of S_x , that is,

$$\rho(x) = \inf\{\langle R_x(s), s \rangle_{S_x} \mid s \in S_x, \ |s| = 1\}$$

and λ_0 is the infimum of the spectrum of the positive Laplacian Δ^M acting on L^2 -functions on M, that is, $\Delta^M = \delta d$, where δ is the adjoint operator of d. Then we have

THEOREM 3.3. Let M be a complete Kähler manifold and let S be any hermitian vector bundle of modules over $\mathbb{C}l(M)$. If $\rho(x) \geq -\frac{1}{2}\lambda_0$ for all $x \in M$ and either $\rho(x_0) > -\frac{1}{2}\lambda_0$ for some $x_0 \in M$ or (M,g) has infinite volume, then the Clifford L^2 -cohomology group is trivial. That is,

$$L^2\mathcal{H}^r(M,S) = \{0\}, \text{ for any } r = 0,1,\dots,n.$$

In order to prove that Theorem 3.3, we prepare some Lemmas;

LEMMA 3.4 ([2]) (the first Kato inequality). For any $s \in \Gamma(S)$, $|d|s|| \leq |\nabla s|$, with equality if and only if for any $X \in TM$, there exists a function f_X such that $\nabla_X s = f_X s$ (at least on the set $\{|s| \neq 0\}$).

LEMMA 3.5 ([2]). If $s \in \Gamma(S)$ satisfies $|d|s|| = |\nabla s|$, then on $\{s \neq 0\}$, $s = |s|s_1$, with $\nabla s_1 = 0$.

LEMMA 3.6 ([2]) (the second Kato inequality). If $s \in \Gamma(S)$ satisfies $\Delta s = 0$, then $\Delta^M |s| \le -2\rho |s|$ with equality if and only if $|d|s|| = |\nabla s|$ and $\langle R(s), s \rangle = 2\rho |s|^2$, where $R = \mathcal{R} + \bar{\mathcal{R}}$.

Proof of Theorem 3.3. By (3.6), it is sufficient to prove that $L^2H^r(M,S)=\{s\in Ker\Delta|s\in L^2(M,S^r)\}=\{0\}$. This proof is based on the method of P. Bérard ([2]). Let $s\in Ker\Delta$ of finite L^2 -norm and denote $\phi:=|s|$, its pointwise norm. First, we assume that $\rho(x)\geq -\frac{1}{2}\lambda_0$ for all $x\in M$. Using Lemma 3.6, we have

$$\Delta^M \phi \le -2\rho \phi \le \lambda_0 \phi.$$

Since M is complete, one can construct function ω_{ℓ} such that $\omega_{\ell} \in C_0^{\infty}(M)$ and $\omega_{\ell} \equiv 1$ on $B(x_0, \ell)$, supp $\omega_{\ell} \subset B(x_0, 2\ell)$ and $|d\omega_{\ell}| \leq C/\ell$ for some constant C, where $\ell \in \mathbb{R}_+$, $x_0 \in M$ and $B(x_0, \ell)$ is the Riemannian open ball with radius ℓ and center x_0 . Multiplying (3.10) by $\omega_{\ell}^2 \phi$ and integrating by parts, we obtain

(3.11)
$$\int \langle d\phi, d\omega_{\ell}^2 \phi \rangle \leq -2 \int \rho \omega_{\ell}^2 \phi^2 \leq \lambda_0 \int \omega_{\ell}^2 \phi^2,$$

where \langle , \rangle denotes the hermitian metric on T^*M . By straight calculation, we have the equality

$$(3.12) \qquad \int \omega_\ell^2 |d\phi|^2 + 2 \int \omega_\ell \phi \langle d\omega_\ell, d\phi
angle = \int |d(\omega_\ell \phi)|^2 - \int \phi^2 |d\omega_\ell|^2.$$

Summing (3.11) and (3.12), we obtain (3.13)

$$\int |d(\omega_\ell\phi)|^2 \leq -2\int
ho\omega_\ell^2\phi^2 + \int \phi^2|d\omega_\ell|^2 \leq \lambda_0\int \omega_\ell^2\phi^2 + \int \phi^2|d\omega_\ell|^2.$$

On the other hand, since λ_0 is the infimum of the spectrum of Δ^M , we get

$$(3.14) \qquad \qquad \int |d(\omega_\ell \phi)|^2 \geq \lambda_0 \int (\omega_\ell \phi)^2.$$

From (3.13) and (3.14), we get

$$\lambda_0 \int (\omega_\ell \phi)^2 \leq \int \phi^2 |d\omega_\ell|^2 - 2 \int \rho \omega_\ell^2 \phi^2 \leq \lambda_0 \int \omega_\ell^2 \phi^2 + \int \phi^2 |d\omega_\ell|^2.$$

Now, if we let $\ell \to \infty$, then by the property $|d\omega_{\ell}| \leq \frac{C}{\ell}$, we obtain

$$(3.15) \lambda_0 \int \phi^2 \le -2 \int \rho \phi^2 \le \lambda_0 \int \phi^2.$$

Under the assumption $\rho(x_0) > -\frac{1}{2}\lambda_0$ for some x_0 , this implies that $\phi = 0$.

Now, we prove the second part. From the inequality $|2\langle a,b\rangle| \le t^2|a|^2+\frac{1}{t^2}|b|^2$ for any $t\in\mathbb{R}$, we have

$$(3.16) \qquad |2\int \omega \phi \langle d\phi, d\omega_{\ell} \rangle| \leq t^2 \int \omega_{\ell}^2 |d\phi|^2 + \frac{1}{t^2} \int \phi^2 |d\omega_{\ell}|^2.$$

Comparing (3.12), (3.14) and (3.16), we obtain

$$egin{aligned} (1-t^2)\int \omega_\ell^2 |d\phi|^2 & \leq -2\int
ho \omega_\ell^2 \phi^2 + rac{1}{t^2}\int \phi^2 |d\omega_\ell|^2 \ & \leq \lambda_0\int \omega_\ell^2 \phi^2 + rac{1}{t^2}\int \phi^2 |d\omega_\ell|^2. \end{aligned}$$

Taking $t = \ell^{-\frac{1}{2}}$ and letting $\ell \to \infty$, the above inequality becomes

(3.17)
$$\int |d\phi|^2 \le -2 \int \rho \phi^2 \le \lambda_0 \int \phi^2$$

and hence $\phi \in \mathcal{S}^1(M)$ (=the first sobolev space). Similarly from (3.16), we obtain the inequality

$$(1+t^2)\int \omega_\ell^2 |d\phi|^2 \geq \int |d(\omega_\ell\phi)|^2 - (1+rac{1}{t^2})\int \phi^2 |d\omega_\ell|^2 \ \geq \lambda_0\int \omega_\ell^2\phi^2 - (1+rac{1}{t^2})\int \phi^2 |d\omega_\ell|^2.$$

Taking $t = \ell^{-\frac{1}{2}}$ and letting $\ell \to \infty$, we get

$$(3.18) \int |d\phi|^2 \ge \lambda_0 \int \phi^2.$$

From (3.17) and (3.18), we have $\int |d\phi|^2 = \lambda_0 \int \phi^2$. Since λ_0 is the infimum of the spectrum of Δ^M , we have $\Delta^M \phi = \lambda_0 \phi$ which implies that $\phi \in C^{\infty}(M)$. By maximum principle and $\phi \geq 0$, $\phi = 0$ or $\phi > 0$ everywhere. Assume $\phi \neq 0$. By Lemma 3.4 and our assumption, $\lambda_0 \phi = \Delta^M \phi \leq -2\rho \phi \leq \lambda_0 \phi$. That is, $\Delta^M \phi = -2\rho |s|$. This implies that $s = |s|s_1$ with $\nabla s_1 = 0$ everywhere and $\langle Rs_1, s_1 \rangle = -\lambda_0$. Because $\Delta s_1 = \nabla s_1 = 0$, this implies that

$$-\lambda_0 = \langle Rs_1, s_1
angle = \langle (\mathcal{R} + \bar{\mathcal{R}})s_1, s_1
angle = 0$$

and hence ϕ is constant and $s_1 \in L^2(S)$. Hence we have that if $Vol(M) = +\infty$, then $\phi = 0$.

Moreover, on $TM \subset \mathbb{C}l(M)$, we have ([8])

$$\mathcal{R} + \bar{\mathcal{R}} = \frac{1}{2}Ric.$$

Hence we have

COROLLARY 3.7. On the complete Kähler manifold, if $Ric \geq -\lambda_0$ and $Ric > -\lambda_0$ at some point x_0 , then every L^2 -harmonic 1-form is necessarily zero.

4. We shall consider some special cases of the results above. To begin, we suppose that M is a Kähler spin manifold, i.e., we assume that

there exists a principal Spin-bundle, $P_{Spin}(M) \to M$, with a $Spin_{2n}$ -equivalent map $\tau: P_{Spin}(M) \to P_{SO}(M)$, to the bundle of real oriented orthonormal frame on M. The bundle of spinors, S, is then defined to be vector bundle associated to the unitary representation Δ of $Spin_{2n}$ given by the unique irreducible complex representation of Cl_{2n} , i.e., $S = P_{Spin} \times_{\Delta} \mathbb{C}^{2^n}$. This bundle is naturally a bundle of modules over $\mathbb{C}l(M)$ and carries a canonical connection induced from the lift of the riemannian connection on $P_{SO}(M)$. Since M is Kähler, this bundle S is naturally holomorphic and its connection is hermitian. On this bundle S, the curvature tensor R^S is given by

(4.1)
$$R_{V,W}^{S} = \frac{1}{4} \sum_{\alpha,\beta=1}^{2n} \langle R_{V,W} X_{\alpha}, X_{\beta} \rangle X_{\alpha} X_{\beta},$$

where X_1, \dots, X_{2n} is any real orthonormal basis of the tangent space ([8]). Choosing a basis e_1, \dots, Je_n , we can write R^S as

$$R_{V,W}^S = 2\sum_{j,k=1}^n \langle R_{V,W}\xi_j, \bar{\xi}_k \rangle \bar{\xi}_j \xi_k + \sum_{j=1}^n \langle R_{V,W}\xi_j, \bar{\xi}_j \rangle.$$

Hence we have

(4.2)
$$\mathcal{R}^{S} = \sum_{j,k=1}^{n} \xi_{j} \bar{\xi}_{k} R^{S}_{\bar{\xi}_{j},\xi_{k}}$$

$$= \sum_{i,j,k=1}^{n} \langle R_{\xi_{i},\bar{\xi}_{i}} \bar{\xi}_{j}, \xi_{k} \rangle \xi_{j} \bar{\xi}_{k}$$

$$= -\frac{1}{2} \sum_{j,k=1}^{n} Ric(\bar{\xi}_{j},\xi_{k}) \xi_{j} \bar{\xi}_{k},$$

where Ric is Ricci tensor on M ([10]). Since Ric is hermitian symmetric, we may choose our basis so that $Ric(\bar{\xi}_j, \xi_k) = 1/2\lambda_j \delta_{jk}$, where $\lambda_j = Ric(e_j, e_j) = Ric(Je_j, Je_j)$, for $j = 1, \dots, n$, are the eigenvalues. Then we have

$$(4.3) \mathcal{D}\bar{\mathcal{D}} + \bar{\mathcal{D}}\mathcal{D} = \nabla^*\nabla + \frac{1}{4}\sum_{j=1}^n \lambda_j\omega_j = \bar{\nabla}^*\bar{\nabla} + \frac{1}{4}\sum_{j=1}^n \lambda_j\bar{\omega}_j.$$

Eun Sook Bang, Seoung Dal Jung and Jin Suk Pak

We note that $\nabla^*\nabla + \bar{\nabla}^*\bar{\nabla} = \frac{1}{2}\tilde{\nabla}^*\tilde{\nabla}$ where

(4.4)
$$\tilde{\nabla}^* \tilde{\nabla} = -\sum_j (\nabla_{e_j, e_j} + \nabla_{J e_j, J e_j})$$

is a self-adjoint, elliptic operator whose kernel is the space of parallel sections ([8]). We note that the scalar curvature κ of M is given by

(4.5)
$$\kappa = trace_R(Ric) = 2\sum_j \lambda_j.$$

Hence we get

THEOREM 4.1 ([10]). On the spinor bundle S, we have

$$4(\mathcal{D}\bar{\mathcal{D}}+\bar{\mathcal{D}}\mathcal{D})=\tilde{\nabla}^*\tilde{\nabla}+\frac{1}{4}\kappa,$$

where κ is the scalar curvature of M.

Summing up Theorem 3.3 and Theorem 4.1, we have

THEOREM 4.2. Let M be a complete Kähler spin manifold. If $\kappa \ge -4\lambda_0$ for all $x \in M$ and either $\kappa > -4\lambda_0$ for some $x_0 \in M$ or (M,g) has infinite volume, then there are no non-trivial L^2 -harmonic spinors.

References

- M. F. Atiyah, R. Bott and A. A. Shapiro, Clifford modules, Topology 3 (1964), 3-38.
- [2] P. Befard, A note on Bochner type theorems for complete manifolds, Manuscripta Math. 69 (1990), 261-266.
- [3] J. Brüning and M. Lesch, Hilbert complexes, J. Funct. Anal. 108 (1992), 88-132.
- [4] K. D. Elworthy and S. Rosenberg, Generalized Bochner theorems and the spectrum of complete manifolds, Acta Appl. Math. 12 (1988), 88-132.
- [5] M. Gaffney, A special Stocks' theorem for complete Riemannian manifolds, Ann. of Math. 60 (1954), 140-145.
- [6] M. Gromov and H. B. Lawson, Jr., Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Publ. Math. I. H. E. S. 58 (1983), 83-196.
- [7] N. Hitchin, Harmonic spinors, Adv. in Math. 14 (1974), 1-55.

Clifford L^2 -cohomology

- [8] H. B. Lawson, Jr. and M. L. Michelsohn, *Spin geometry*, Princeton Univ. Press, Princeton, New Jersey, 1989.
- [9] A. Lichnerowicz, Spineurs harmonigues, C. R. Acad. Sci. Paris, Series A-B 257 (1963), 7-9.
- [10] M. L. Michelsohn, Clifford and spinor cohomology of Kähler manifolds, Amer. J. Math. 102 (1980), 1083-1146.
- [11] J. S. Pak and S. D. Jung, Clifford L²-cohomology on the complete Kähler manifolds, J. Korean Math. Soc. 34 (1997), 167-179.
- [12] J. Roe, Elliptic operators, Topology and Asymtotic methods, Longman Scientific and Technical, 1988.
- [13] R. S. Strichartz, Analysis of the Laplacian on the complete Riemannian manifold, J. Funct. Anal. 52 (1983), 48-79.
- [14] J. A. Wolf, Essential self-adjointness for the Dirac operator and its square, Indiana Univ. Math. J. 22 (1973), 611-640.

EUN SOOK BANG AND SEOUNG DAL JUNG, DEPARTMENT OF MATHEMATICS, CHEJU NATIONAL UNIVERSITY, CHEJU 690-756, KOREA

JIN SUK PAK, DEPARTMENT OF MATHEMATICS, KYUNGPOOK NATIONAL UNIVERSITY, TAEGU 702-701, KOREA