Bull. Korean Math. Soc. 35 (1998), No. 4, pp. 669681

CLIFFORD L:.-COHOMOLOGY ON THE
COMPLETE KAHLER MANIFOLDS II

EUN Sook BANG, SEOUNG DAL JUNG AND JIN SUK PAK

ABSTRACT. In this paper, we prove that on the complete Kahler
manifold, if p(z) > —é)\o and either p(zg) > —%)\0 at some point g
or Vol(M) = oo, then the Clifford L2-cohomology group L?#H*(M, S)
is trivial, where p(z) is the least eigenvalue of R, + R(z) and Xg is
the infimum of the spectrum of the Laplacian acting on L2- functions
on M.

0. One of the important object in the study of a manifold is its
Clifford algebra CI(M), generated by the tangent space. It carries an
intrinsic first order elliptic operator I, which is called the Dirac opera-
tor. There is a canonical vector (but not algebra) bundle isomorphism
A*(M) — ClI(M), where A*(M) is an exterior algebra of M. In A*(M),
the Dirac operator D is D = d+4§ and the Laplace operator is the square
of the Dirac operator, where d is the exterior differential and ¢ is the ad-
joint operator of d. Therefore many results of the Clifford theory yield
the results of the de Rham theory ([8]). In 1980, M. L. Michelsohn
([10]) proved many results for the Dirac operator on compact Kahler
manifold. Recently, J. S. Pak and S. D. Jung ([11]) extended the results
of M. L. Michelsohn ([10]) and obtained the following theorem for the
Dirac operator on complete Kéhler manifold.

THEOREM A. Let M be a complete Kéahler manifold and S be any
hermitian vector bundle of modules over Ci(M). If R is non-negative
and positive at some point of M, then the Clifford L?-cohomology group
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is trivial, where R is the symmetric endomorphism of S containing the
curvature data.

In this paper, we prove Theorem A under the assumption of weaker
curvature endomorphism R which is bounded by —%)\0 from below, A
is the infimum of the spectrum of the positive Laplacian AM acting on
L?-functions on M. The method of this study is based on that of P.
Bérard ([2]). From our results, we deduce the vanishing theorem for
the harmonic forms which extend the results of K. D. Elworthy and
S. Rosenberg ([4]) to the Kahler case. Also, we study the harmonic
spinors under some condition of the scalar curvature.

1. Let M be a 2n-dimensional Kahler manifold with almost complex
structure J and with connection V. Let CI(M) be the Clifford bundle
generated by the tangent bundle TM. Now we define a derivation
Jo : Cl(M) — CI(M) induced by J as follows:

k
(11) To(wr---vi) = vy Juj -0
j=1
for v1,--- ,vx € TM, where “.” is the Clifford multiplication. If it

is clear from the context which multiplication is meant, we omit the
Clifford multiplication “-”. To study Jo effectively we consider the
complexification CI(M) = CI(M) ®r C. This algebra has a natural
basis given as follows: Let e1,--- ,e,, Jei, -, Je, be an orthonormal
basis of T,M. Let T} (resp. T2'}) be the i eigenspace (resp. —i
eigenspace) of J in T, M ® C. Put

1 . - 1 .
& = §{€k —iJex}, &= 5{61: +iJex}.

Then &1, -+ , &, (resp. &, ,&,) is the basis of T2 (resp. T>!). And
{&, &k} has the following properties;

(1.2) &x€p+Eibo = ExbotEobr = —Oke, En€e = —Cobk, Exbo = —Ebby.
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Denote £x€r = &, - &k, &, - - &, , where K and I range over all strictly
ascending multiindices from {1,--- ,n}. For convenience we set J =
%Jo. Then by the derivation property, we have

(1.3) J(€xér) = (K| - |I)¢kér,

where | K|, |I| denote the lengths of K and I. This gives a decomposition
CiM)= & CPP(M),
p=—n

where CIP(M) = {¢ € CI(M) | T¢ = pé}.
We now introduce two intrinsically defined linear maps £, £ : CI(M)
— Cl(M) as follows; For any ¢ € CI(M), set

(1.4) L(p)=—> &b, L(p)=— &bk
k=1 k=1

These operators are independent of the Hermitian basis chosen to define
them. We consider the operator # = [£,L]. Then they satisfy the
following relations;

(1.5) L,L)=H, [H,L)=2L, [H,L]=-2L
Hence they define a representation of s¢(2,C), the Lie algebra of SL(2, C)
on CI(M). Since each of the operators £, £ and H commutes with 7,
we can define the subspaces

CiPI(M) = {p € CUM) | Ho = qp, T = pp}

and obtain a decomposition ([10])

(1.6) CUM) = ®CIPI(M).

pq
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PROPOSITION 1.1 ([10]). For each £ € T°(M), one has that ¢ -
ClP9 C CIPY1atl and £ - CIP9 C CIP~ 191, Furthermore, if £ # 0, the
sequences

L2 cp—1a-1 e, cpa AR Cptlhetl ..
L2 optam1 2 gpa 26 el

)

where A¢ denotes left Clifford multiplication by &, are exact.

2. Suppose that M is a complete Kéhler manifold. We introduce
two differential operators D, D : I'CI(M) — I'Cl(M) by the formulas

(2.1) D= Z{jVEj, D= ZEngj,
J J
where V is the canonical connection. Since V preserves the subbundles
I'CiP9(M), we have
D(ICIP9) c TCIPHIet ) D(rCiP9) c rCir-ta-t

for all p and ¢q. Then we have the following well known fact:
THEOREM 2.1 ([10]). The operators D and D are formal adjoints
of one another on 'y, CI(M), the set of all sections with the compact
support. And they satisfy
D? = D* = 0.
Furthermore, the complex

.. 2, rcp-1a-1 P, pope 2, poptlatl 2, L

is elliptic.

Now we set
(2.2) A = DD+ DD.

672



Clifford L2-cohomology

Then A is a formally self-adjoint elliptic operator. To understand A
we introduce two “real” operators on CI(M):
(2. 3)

Z{eJVeJ (Je;)V e, }, Z{e]v,,e, (Je;j)Ve,}.

The first operator is called the Dirac operator. Then we can easily see
that

(2.4) D= 211-(D+z‘D°), D= i(D—iDC).

Since D? = 0, we have that D? = (D)2 and DD°+D*D = 0. It follows
that

(2.5) A = %Dz.

Since D is essentially self-adjoint, we have
(2.6) KerD = KerD? = KerA.

Now, we consider the usual inner product

(2.7) {1, 02)) = /M«ol,m

for any ¢1,p2 € TeptCI(M). Let L2(CiP9(M)) be the completion of
It CIP? with respect to ((, )). We recall that the operators D and D
are formal adjoint to one another with respect to {{, )). Then D and D
have closed extensions in L2(CIP9(M)). But since M is complete, their
closed extensions are unique ([3]). From now on, we write the closed
extensions as the same symbols. Now, we put

(2.8) L*HP9 := KerD/ImD N L*(CIP(M)),
(2.9) L*HP9 .= KerDN KerD N L*(CIP9(M)),
(2.10) L2HP9:= KerA N L2(CIPY(M)).

Here L2HP? and L2HP9 are called the Clifford L2-cohomology group
and L2-harmonic space, respectively. Then we have
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PROPOSITION 2.2 ([11]). Let M be a complete Kahler manifold.
Then we have
L2HPY o [29P9 =~ [2 P,

3. Let M be a Kihler manifold and S — M a hermitian vector
bundle of left modules over CI(M) with a hermitian metric (, ) such
that:

(1) Module multiplication by unit tangent vectors is unitary, i.e.,

3.1) € %)+ (8,&-9) =0,

for any ¢,¢ € I'(S) and £ e (TM) ® C

(2) With respect to the canonical hermitian connection, covariant
differentiation is a derivation of module multiplication. That is, for
¢ € T(CI(M)) and s € I'(S), we have

(3.2) V(g-s)=(Vd)-s+¢-(Vs).

Now, we recall some basic results from [10]. For each j, we set
wj = &€&, ©; = —&;¢. To each (possibly empty) subset I =
{t1,-++,ip} € {1,---,n} with complementary subset {ji, - ,jn—p}
we set wy = wj, - w;,@j, - --Wj,_, and we denote [I| = p. Then we
have

n
(3.3) 1= [](w;+@;) Zm,

=1

where 7. = 3, |, wr. Moreover, we have an orthogonal decomposition
of the bundle

(3.4) S = @Os’", S =, -5
Then the complex
(35) 0= Tap(S%) 2 Lope(8Y) 2o -+ 2 Tpe(8™) — 0

674



Clifford L2-cohomology

is elliptic and its completion becomes a Hilbert complex ([3]). Similarly
with Proposition 2.2, we have
(3.6) L*H"(M, S) = L2*H" (M, S) = L*H" (M, S).

Now, we define invariant operators on I'(S) by
V'V = _Zvﬁj,fj’ VY = _Zvﬁ_j,ﬁj’
J Y

R=1 &&Re e, R=1 &R g,

Jk ik

(3.7)

where Ry,w = Vv,w —Vw,v is the curvature tensor and where Vy,w =
VvVw — Vy,w is the invariant second covariant derivative. Then we
obtain

PRroOPOSITION 3.1 ({10]). For any two sections s1, sz € I'(S), at
least one of which has compact support, the following holds:

/ (V*Vsy, 3) = f (Vs1,Vsa),
M M

where (Vs1,Vsy) = (Vg s1, Vg, s2). Hence V*V is a formally self ad-
Jjoint, nonnegative operator. Similarly, this holds for V*V. Moreover,
the zero order operators R and R are self-adjoint.

By the straight calculation, we obtain the Bochner-Weitzenbock type
formula ({10]);

(3.8) DD+DD=V*V+R=V*V+R.
From this formula, we have
(3.9) 2DD+DD)=V*'V+V*V+R+R.

Let p(x) denote the least eigenvalue of R;(= R, +R), the symmet-
ric endomorphism of S, that is,

p(z) = inf{(Rx(s),5)s, | s € S, |s| =1}

and )g is the infimum of the spectrum of the positive Laplacian AM
acting on L2-functions on M, that is, AM = §d, where § is the adjoint
operator of d. Then we have
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THEOREM 3.3. Let M be a complete Kahler manifold and let S b
any hermitian vector bundle of modules over CI(M). If p(z) > —4 X
for all z € M and either p(zo) > —3 Ao for some zg € M or (M, g) ha:
infinite volume, then the Clifford L?-cohomology group is trivial. Tha
is,

L*H"(M,S) = {0}, foranyr=0,1,---,n
In order to prove that Theorem 3.3, we prepare some Lemmas;

LEMMA 3.4 ([2]) (the first Kato inequality). For any s € I'(S).
|d|s|| < |Vs|, with equality if and only if for any X € TM, there exists
a function fx such that Vxs = fxs (at least on the set {|s| # 0}).

LEMMA 3.5 ([2]). Ifs € I'(S) satisfies |d|s|| = |Vs|, then on {s # 0},
s = |s|s1, with Vs; = 0.

LEMMA 3.6 ([2]) (the second Kato inequality). If s € I'(S) satisfies

As = 0, then AM|s| < —2p|s| with equality if and only if |d|s|| = |Vs|
and (R(s), s) = 2p|.s|2 where R =R + R.

Proof of Theorem 3.3. By (3.6), it is sufficient to prove that
L?H"(M,S) = {s € KerAls € L>(M, S")} = {0}. This proof is based
on the method of P. Bérard ([2]). Let s € KerA of finite L2-norm and
denote ¢ := |s|, its pointwise norm. First, we assume that p(z) > ~1 g
for all z € M. Using Lemma 3.6, we have

(3.10) AM¢ < —2p¢ < Mg

Since M is complete, one can construct function w, such that w, €
C§°(M) and wy = 1 on B(xo,£), supp we C B(xo,2¢) and |dwy| <
C/{ for some constant C, where £ € R4, 2o € M and B(xo,£) is the
Riemannian open ball with radius ¢ and center zo. Multiplying (3.10)
by w?q& and integrating by parts, we obtain

(3.11) [as,a00) < -2 [ ptg? <0 [uie®

where (, ) denotes the hermitian metric on T*M. By straight calcula-
tion, we have the equality

(3.12) / wi|de|? + 2 / wep(dwe, dp) = / |d(weg)[? / ¢*|dwy|?.
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Summing (3.11) and (3.12), we obtain
(3.13)

[z <=2 [ e+ [ aun <0 [o?+ [ Haunl

On the other hand, since )p is the infimum of the spectrum of AM,
we get

(3.14) / et 2 %o [ (e,

From (3.13) and (3.14), we get

Yo [wis < [ dunf —2 [ g <0 [utd?+ [ Sl
Now, if we let £ — oo, then by the property |dw,| < %, we obtain

(3.15) o / ¢? < -2 / pd® < Ao / ¢’

Under the assumption p(xp) > —%)\o for some xp, this implies that
¢=0.

Now, we prove the second part. From the inequality |2(a,b)| <
t2|a|? + %|b|? for any t € R, we have

G16) 12 [wplds ol <& [hldoP + 5 [ Sl
Comparing (3.12), (3.14) and (3.16), we obtain
1
(1-¢%) / wilde|* < -2 / pid® + / ¢°|duwe|?
<o [a?+ 5 [ Plduef’

1

Taking ¢t = £~ 2 and letting £ — oo, the above inequality becomes

(3.17) / ldg|* < —2 / pp” < Ao / ¢’
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and hence ¢ € S'(M) (=the first sobolev space). Similarly from (3.16),
we obtain the inequality

(1) [RldoP > [latwd) - 0+ ) [ Sldoet
> Ao/w§¢2 -1+ ;15)/¢2Idwe|2-

1

Taking t = £ 2

(3.18) [1aer = [ 62

From (3.17) and (3.18), we have [|d¢|2 = Ao [ ¢%. Since Ao is the
infimum of the spectrum of A, we have AM¢ = Ay which implies
that ¢ € C*°(M). By maximum principle and ¢ > 0, ¢ = 0 or ¢ >
0 everywhere. Assume ¢ # 0. By Lemma 3.4 and our assumption,
Moo = AMp < —2pp < Ag¢. That is, AM¢ = —2p|s|. This implies
that s = |s|s; with Vs; = 0 everywhere and (Rs1,s1) = —Ag. Because
As; = Vs = 0, this implies that

and letting £ — oo, we get

—Xo = (Rs1,81) = (R + 72)81,81) =0

and hence ¢ is constant and s; € L2?(S). Hence we have that if
Vol(M) = 400, then ¢ = 0. 0

Moreover, on TM C CI(M), we have ([8])
— 1 ..
R+ R = ERlC.

Hence we have

COROLLARY 3.7. On the complete Kihler manifold, if Ric > —Xg
and Ric > —)g at some point xg, then every L?—harmonic 1-form is
necessarily zero.

4. We shall consider some special cases of the results above. To
begin, we suppose that M is a Kahler spin manifold, i.e., we assume that
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there exists a principal Spin-bundle, Pgpn(M) — M, with a Sping,-
equivalent map 7 : Pspin(M) — Pso(M), to the bundle of real oriented
orthonormal frame on M. The bundle of spinors, S, is then defined to
be vector bundle associated to the unitary representation A of Spinsg,
given by the unique irreducible complex representation of Cls,, i.e.,
S = Pgpin Xa C?". This bundle is naturally a bundle of modules over
CI(M) and carries a canonical connection induced from the lift of the
riemannian connection on Pgo(M). Since M is Kahler, this bundle S is
naturally holomorphic and its connection is hermitian. On this bundle
S, the curvature tensor RS is given by

2n
1
(41) Riw =7 D (RvwXa, Xs)XaXp,
a,B=1
where Xi,- -+, X9, is any real orthonormal basis of the tangent space
([8]). Choosing a basis ej,- - - , Je,, we can write RS as

Ry =2 Z (Rv,wé;, )&k + Z Rv,wé&;, &5).

J:k=1

Hence we have

n
(4.2) RS = Z €€ Z,ek
7,k=1
n

= Y (Re, 6.8 )86

1,7,k=1

= ——;— Z R’LC €J,§k éy&k’

k=1

where Ric is Ricci tensor on M ([10]). Since Ric is hermitian symmetric,
we may choose our basis so that Ric(§;,&) = 1/2);0;k, where \; =
Ric(ej,e;) = Ric(Jej, Jej), for j =1,--- ,n, are the eigenvalues. Then
we have

_ B 1 n o n
(4.3) DD+ DD =V*V + Z}:A,wj = V'V + <) M@
j=1 j=1
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We note that V*V + V*V = %6*@ where

<k

(44) 6* = — Z(Vej,ej + VJej,Jej)
J

-~

is a self-adjoint, elliptic operator whose kernel is the space of parallel
sections ([8]). We note that the scalar curvature « of M is given by

(4.5) .k =tracer(Ric) = ZZ Aj.
J

Hence we get

THEOREM 4.1 ([10]). On the spinor bundle S, we have
4DD+DD)=V'V + %n,

where k is the scalar curvature of M.
Summing up Theorem 3.3 and Theorem 4.1, we have

THEOREM 4.2. Let M be a complete Kihler spin manifold. If k >
—4M\g for all z € M and either k > —4)\o for some x9 € M or (M, g)
has infinite volume, then there are no non-trivial L?>-harmonic spinors.
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