THE STABILITY OF THE EQUATION f(x+p) = kf(x)

SANG HAN LEE AND KIL-WOUNG JUN

ABSTRACT. In this paper, we investigate the Hyers-Ulam stability of the (p, k)-MP functional equation.

1. Introduction

The stability problem of functional equations has been originally raised by S. M. Ulam [5]. In 1940, he had raised the following question: Under what conditions does there exist an additive mapping near an approximately additive mapping? In 1941, this problem was solved by D. H. Hyers [1] for the first time. This problem has been further generalized and solved by Th. M. Rassias [4]. Thereafter, the stability problem of functional equations has been extended in various directions and studied by several mathematicians [2].

In this paper, the Hyers-Ulam stability of the (p,k)-MP functional equation (1) is investigated. Furthermore, a modified Hyers-Ulam-Rassias stability of the functional equation (9) shall also be investigated.

2. Hyers-Ulam stability of the (p,k)-MP functional equation

The following functional equation

$$(1) f(x+p) = kf(x)$$

is called the (p, k)-MP functional equation. Throughout this section, let $\delta > 0$, k > 0, and $p \neq 0$ be fixed.

Received March 31, 1998.

1991 Mathematics Subject Classification: Primary 39B72, 39B22.

Key words and phrases: (p, k)-MP functional equation, stability.

THEOREM 1. Let $k \neq 1$. If a mapping $f : \mathbb{R} \to \mathbb{R}$ satisfies the following inequality

$$|f(x+p)-kf(x)| \le \delta$$

for all $x \in \mathbb{R}$, then there exists a unique solution $F : \mathbb{R} \to \mathbb{R}$ of the (p,k)-MP functional equation (1) with

$$|F(x) - f(x)| \le |k - 1|^{-1}\delta$$

for all $x \in \mathbb{R}$.

Proof. (I) The case of 1 < k: For any $x \in \mathbb{R}$ and for every nonnegative integer n we define

$$P_n(x) = k^{-n} f(x + pn).$$

Then $P_0(x) = f(x)$. By (2) we have

$$|P_{n+1}(x) - P_n(x)| \le k^{-(n+1)}\delta,$$

whence

$$|P_n(x) - f(x)| \le (k-1)^{-1} \delta.$$

Let $m \leq n$. Then

$$|P_n(x) - P_m(x)| \le k^{-m}(k-1)^{-1}\delta,$$

whence $|P_n(x) - P_m(x)| \to 0$ as $m, n \to \infty$ since k > 1. This fact implies that $\{P_n(x)\}$ is a Cauchy sequence for all $x \in \mathbb{R}$ and hence we can define a mapping $F : \mathbb{R} \to \mathbb{R}$ by

$$F(x) = \lim_{n \to \infty} P_n(x)$$

for all $x \in \mathbb{R}$. Then by (4), F satisfies the inequality (3) and

(5)
$$F(x+p) = \lim_{n \to \infty} P_{n-1}(x+p) = k \lim_{n \to \infty} P_n(x) = kF(x)$$

for all $x \in \mathbb{R}$. Thus $F(x+pn) = k^n F(x)$, so $F(x) = k^{-n} F(x+pn)$. Now, let $G: \mathbb{R} \to \mathbb{R}$ be another mapping which satisfies (5) as well as (3) for all $x \in \mathbb{R}$. It follows from (5) and (3) that

$$|F(x) - G(x)| = |k^{-n}F(x+pn) - k^{-n}G(x+pn)|$$

$$\leq k^{-n}(|F(x+pn) - f(x+pn)| + |G(x+pn) - f(x+pn)|)$$

$$\leq k^{-n}((k-1)^{-1}\delta + (k-1)^{-1}\delta)$$

for all $x \in \mathbb{R}$ and all positive integers n. Thus F(x) = G(x).

(II) The case of 0 < k < 1: An equivalent formula of inequality (2) is

(6)
$$|f(x-p) - k^{-1}f(x)| \le k^{-1}\delta.$$

By the proof of the case (I), there exists unique $F: \mathbb{R} \to \mathbb{R}$ such that

(7)
$$F(x-p) = k^{-1}F(x)$$

and

(8)
$$|F(x) - f(x)| \le \frac{1}{k^{-1} - 1} k^{-1} \delta = \frac{1}{1 - k} \delta.$$

An equivalent form of (7) is

$$F(x+p) = kF(x).$$

The proof is complete.

The following example shows that the above theorem is false when k = 1.

EXAMPLE 2. Let f(x) = x and p = 1, $\delta = 1$, k = 1. Then $|f(x + 1) - f(x)| = 1 = \delta$. Assume that F(x) is a solution of the (1,1)-MP functional equation (1). If F(0) = c, then F(n) = c for all $n \in N$. Thus $|F(n) - f(n)| = |c - n| \to \infty$ as $n \to \infty$.

3. A modified Hyers-Ulam-Rassias stability of the (p, k)-MP functional equation

Let δ , ϵ , p > 0 be given and define

$$lpha(x) = \prod_{i=0}^{\infty} [1 - \delta(x + pi)^{-(1+\epsilon)}], \; eta(x) = \prod_{i=0}^{\infty} [1 + \delta(x + pi)^{-(1+\epsilon)}]$$

for any $x > \delta^{1/(1+\epsilon)}$. Let $n_0 \ge 0$ be any integer. By using an idea from [3], we can prove the following theorem:

THEOREM 3. Let 0 < k. If a mapping $f : (0, \infty) \to (0, \infty)$ satisfies the inequality

(9)
$$\left| \frac{f(x+p)}{kf(x)} - 1 \right| \le \frac{\delta}{x^{1+\epsilon}}$$

for all $x > n_0$, then there exists a unique solution $F: (0, \infty) \to [0, \infty)$ of the (p, k)-MP functional equation (1) with

(10)
$$\alpha(x) \le F(x)/f(x) \le \beta(x)$$

for all $x > \max\{n_0, \ \delta^{1/(1+\epsilon)}\}.$

Proof. Let $P_n(x)$ be defined as in the proof of Theorem 1. For any x > 0 and for all positive integers m, n with n > m, it holds

$$\frac{P_n(x)}{P_m(x)} = \frac{f(x + p(m+1))}{kf(x + pm)} \frac{f(x + p(m+2))}{kf(x + p(m+1))} \cdots \frac{f(x + pn)}{kf(x + p(n-1))}.$$

If $m(>n_0)$ is so large that $1-\delta(x+pm)^{-(1+\epsilon)}>0$, we then obtain

$$\prod_{i=m}^{n-1} [1 - \delta(x+pi)^{-(1+\epsilon)}] \le P_n(x)/P_m(x) \le \prod_{i=m}^{n-1} [1 + \delta(x+pi)^{-(1+\epsilon)}]$$

or

$$\sum_{i=m}^{n-1} \ln \left[1 - \delta(x+pi)^{-(1+\epsilon)} \right] \le \ln P_n(x) - \ln P_m(x)$$

$$\le \sum_{i=m}^{n-1} \ln \left[1 + \delta(x+pi)^{-(1+\epsilon)} \right].$$

The stability of the equation f(x+p) = kf(x)

Since

$$\lim_{m\to\infty}\sum_{i=m}^{\infty}\left|\ln\left[1-\delta(x+pi)^{-(1+\epsilon)}\right]\right|=\lim_{m\to\infty}\sum_{i=m}^{\infty}\ln\left[1+\delta(x+pi)^{-(1+\epsilon)}\right]=0,$$

we conclude that $\{\ln P_n(x)\}\$ is a Cauchy sequence for all x > 0. Hence, we can define

$$L(x) = \lim_{n \to \infty} \ln P_n(x)$$

and

$$F(x) = e^{L(x)}$$

for all x > 0. So, $F(x) = \lim_{n \to \infty} P_n(x)$ and

$$F(x+p) = \lim_{n \to \infty} P_n(x+p) = \lim_{n \to \infty} k P_{n+1}(x) = kF(x)$$

for all x > 0. Now, let $x > \max\{n_0, \delta^{1/(1+\epsilon)}\}$. It then holds $1 - \delta(x + pi)^{-(1+\epsilon)} > 0$ for $i = 0, 1, \cdots$. Therefore, it follows from (9) that

$$\prod_{i=0}^{n-1} [1 - \delta(x+pi)^{-(1+\epsilon)}] \le P_n(x)/f(x) \le \prod_{i=0}^{n-1} [1 + \delta(x+pi)^{-(1+\epsilon)}]$$

since

$$\frac{P_n(x)}{f(x)} = \frac{f(x+pn)}{kf(x+p(n-1))} \frac{f(x+p(n-1))}{kf(x+p(n-2))} \cdots \frac{f(x+p)}{kf(x)}.$$

This implies the validity of (10). Now, it remains only to prove the uniqueness of F. Assume that $G:(0,\infty)\to [0,\infty)$ is another solution of the (p,k)-MP functional equation (1) and satisfies (10). Since both F and G are solutions of (1), it follows

$$\frac{F(x)}{G(x)} = \frac{F(x+pn)}{G(x+pn)} = \frac{F(x+pn)}{f(x+pn)} \frac{f(x+pn)}{G(x+pn)}$$

for any x > 0. Hence, we have

$$\frac{\alpha(x+pn)}{\beta(x+pn)} \le \frac{F(x)}{G(x)} \le \frac{\beta(x+pn)}{\alpha(x+pn)}$$

Sang Han Lee and Kil-Woung Jun

for all sufficiently large n. It is clear that the infinite products $\alpha(x)$ and $\beta(x)$ converges for all x > 0. Therefore, by using the relations

$$\alpha(x) = \lim_{n \to \infty} \alpha(x+pn) \lim_{n \to \infty} \prod_{i=0}^{n-1} [1 - \delta(x+pi)^{-(1+\epsilon)}] = \lim_{n \to \infty} \alpha(x+pn)\alpha(x)$$

and

$$eta(x) = \lim_{n \to \infty} eta(x+pn) \lim_{n \to \infty} \prod_{i=0}^{n-1} [1 + \delta(x+pi)^{-(1+\epsilon)}]$$

$$= \lim_{n \to \infty} eta(x+pn) eta(x),$$

we conclude that $\alpha(x+pn) \to 1$ and $\beta(x+pn) \to 1$ as $n \to \infty$. Hence, it is obvious that F(x) = G(x) holds true for all x > 0.

References

- D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.
- [2] D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aeq. Math. 44 (1992), 125-153.
- [3] S. M. Jung, On a general Hyers-Ulam stability of gamma functional equation, Bull. Korean Math. Soc. 34 (1997), 437-446.
- [4] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
- [5] S. M. Ulam, Problems in modern mathematics, Chapter VI, Science Editions, Wiley, New York, 1960.

SANG HAN LEE, OKCHON COLLEGE, OKCHON, CHUNGBUK 373-800, KOREA E-mail: shlee@occ.ac.kr

KIL-Woung Jun, Department of Mathematics, Chungnam National University, Taejeon 305-764, Korea

E-mail: kwjun@math.chungnam.ac.kr