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WAVELET REPRESENTATION OF DERIVATIVE
OPERATORS: ALTERNATIVE DERIVATION

SoON-GEoL KwON

ABSTRACT. The original work for representing derivative operators
in the wavelet bases was done by Beylkin in [2]. In this paper we
present an alternative and easier derivation.

1. Introduction and preliminaries

In (3], Daubechies introduces compactly supported wavelets which
are very useful in numerical analysis [1]. In [2], G. Beylkin introduces
representations of operators, such as the operator of differentiation, etc.,
in orthonormal bases of compactly supported wavelets. In this paper,
we are mainly focus on the derivative operators.

The representation of derivative operators is completely determined
by the coefficients r; in the subspace Vp of L2(R) (see [2]). In this paper,
we give an alternative and easier derivation of the representation of
derivative operators, and connection coefficients r;, which are used for
representing derivative operators and are exactly the same coefficients
7 in [2].

In this section, we briefly review the fundamentals of wavelet theory.
The standard references for wavelets are [3,4].

A multiresolution analysis of L?(R) is a sequence of closed subspaces
{Vi}xez of L2(R) with the following properties:

(i) Vi C Viy1,
(ii) U Vi is dense in L*(R) and n Vi = {0},

keZ kezZ
(iil) flx)eVi <= f(22) € Vi,
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(iv) f(z)eVo <= f(z—j)e VpforeachjeZ,

(v) there exists a function ¢(x) € Vp, called the scaling function,
such that {¢(z — j)}cz forms a Riesz basis of Vj.

If the family of the integer translates {¢(xz — j)};cz of a scaling
function ¢ forms an orthogonal basis of Vj, then we call ¢ an orthogonal
scaling function.

We denote the scaled translates of ¢ by

oh(z) = 2F/2¢(2%z — j).

Then, for fixed k € Z, the {(;b;?}jez forms a Riesz basis of Vj.
We assume that the basis functions are normalized, i.e.,

/_0:0 o(z)dz = 1.

Let P; be the orthogonal projection from L?(R) onto Vj; that is,
Py f is the best L?(R) approximation to f € L?(R) from Vj. If {¢f}jez
is an orthonormal basis of Vi, then we obtain the orthogonal projector
Py from L2(R) onto Vi as

(o o)

Pef(@)= Y (f,éh)65(x),

j=—o0

where (, ) is the standard real inner product of two functions in L2(R).
We call Py f the wavelet approzimation to f at the resolution h = 2~k
and < 7, ¢;-° > the wavelet coefficients of f.

2. The representation of operators in the wavelet bases

Let Vi and V; be two subspaces of Lz(R) with respective bases
{¢f}icz and {¢}}icz.

Let T be a linear operator from Vj to V;. Then the image of ¢¥ can
be expressed as a linear combination of {¢!}:

(2.1) Toh =) tié
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The coefficient ¢;; is the ith component of T<¢>;-c in the basis {¢!}, and
T = (t;;) is the matrix representation of T in the bases {¢¥} and {¢!}.
If {¢*} is an orthogonal basis for Vi, then t;; = (T¢;‘, &Y.

More generally, T = (t;;) with t;; = (T¢],¢l) represents P, TPy,

where T : L2(R) — L2(R). If {¢*} and {¢!} are orthonormal bases for
Vi and V, respectively, then

(2.2) PTPugk = tij¢h =D (PTPugf, 6l)¢h.

%

In particular, if T is the n** order derivative operator, then
(2.9 b= [ o) g ti(a) da
and T = (t;;) represents P, TP.

3. The scaling function quto-correlation

Assume that the scaling function ¢ satisfies the dilation equation
(3.1) $(x) = V2 _ h; (22— j)
J
and the h coefficients in the dilation equation satisfy
S hi=v2 and ) (-1Yh;=
J J
Define the auto-correlation function r by
o0
(32) )= [ su-s)swdy
—0Q

Note that r(z) is an even function. By substituting the dilation equa-
tion into (3.2), we obtain

(3.3) r(z) = \/52 anr(2z — n)
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where

3.4 ap = —1— hihiyn and A_p = Any,.
( ) \/-2' Fieg+
J

Note that if {¢;(z)}icz is an orthonormal basis for Vj, then

1 1
ag = 7 E hjhjio = E&n-
J

where § is the Kronecker delta function. Since Zan = /2 and
n

Z(—l)"an = 0, r(x) is another scaling function if ¢ has compact

sgpport.

If subscripts of A; run from I; to Iy, then ¢ has support in [I,l2].
Let L =1y —1;. Then L + 1 is the number of coefficients h; and L is
the length of the support of ¢. The subscripts of a,, run from —L to L.
So r(z) has support in [~L, L]. The number of coefficients h;, L + 1,
is related to the number of vanishing moments M for the wavelet 1.
For the Daubechies wavelets, L + 1 = 2M. If additional conditions are
imposed, then the relation might be different, but L + 1 is always even.

To calculate point values of 7(z), we begin for z € Z. For [ € Z, we
denote r(l) by ri, i.e.,

oo
(3.5) rpi=r(l)= / oz — 1) () dz.
The r; are called the connection coefficients. The fact that
L 2+L
N=vV2 Y awran=v2 > ay_mrm
n=—1L m=2l—-1,

leads to an eigenvalue problem of size 2L + 1
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where

A= (V2a2i—j)-L<i2i-i<L,

F=(r_p,...,rp)T.
In fact,

a—L
a_r+2 Q-L4+1 Q-
(37) A=+v2
ar ar-1 Qr-2
ar,
Since all column sums of A are either
V2 Z azr =1
k
or
V2 Z agk+1 =1,
k

(1,1,---,1) is a left eigenvector with eigenvalue 1. Hence, a right eigen-

vector 7 for eigenvalue 1 exists.

If {¢i(z)}icz is orthonormal basis for Vp, then the eigenvector 7 for
eigenvalue 1 is always (0,---,0,1,0,---,0)7. Because v/2az; = dq; this
implies that

(A—-I)’f“= \/5(0, y2~2,00,02," ** ,O)T'—(O"" ,0,L,0,--- ’0)T=6'

In this case, r(l) = ffooo o(z — )o(x) dz = bo-
Therefore, we normalize r; with

(3.8) Y =1
1

The first row of (3.6) is r_; = v2a_pr_p. If Vv2a_; # 1, then
r_r = 0 and r; = 0 also, since a_;, = a;. This condition is usually
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satisfied, for example, if ¢ is a Daubechies scaling function. In this case,
it suffices to solve an eigenvalue problem of size 2L — 1

(3.9) T = AF,
where

A= (V2a2i-j)-Lt1<ii-j<i—1

7= (r—L41,-.. ,T'L-l)T-
In fact,
(3.10)
a_r+1 G-L
A_r+3 Q0—L+2 Q-L[4+1 G-L
A=+2 :

ar 4r-1 ar-2 ar-3
ar  ar-1

Hence, we have the following theorem.

THEOREM 3.1. If ¢ is an orthonormal scaling function with compact
support, and if v/2a_;, # 1, then the connection coefficients 71 can be
determined uniquely by solving (3.9) and (3.8).

The values of r(z) at all dyadic points z can be calculated from the
dilation equation. This is identical to the procedure for finding point
values of ¢ ([4,6]).

Now we are ready to represent derivatives.

4. The n** order derivative operator in the wavelet bases

Let T be the n** order derivative operator. For any positive integer
n, define the function 7(")(z) by

(4.1) @) = [ " oy — ) %,;qb(y) dy.
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Wavelet representation of derivative operators

The relationship between the n'* derivative of the scaling function auto-
correlation and 7(")(z) is

(4.2) Ed;%r(a:) = (-1)"r"™(—z) = r®(x).
Forle Z,
(4.3) r{™ = () = /_ ” oz —1) dig%qﬁ(m) dz.

Recall the matrix representation of P,T P;, in section 1, where P is the
orthogonal projection on the subspace Vj of L%(R). We can express the
entries t;; of the matrix representation of PTP; with rl("):

ad) o= [ @@ de =2 = o,

where h = 2~*. By repeated integration by parts in (4.3), we obtain

the odd and even properties for 'r,(n) :

(45) . r& =

{ —r{™ for odd n,
for even n.

rl(")

Now

") () = \/§Z 0,2"r(™(2z — n).

The fact that

L 2+L
B ZIVE S a2 TVE S ar
e L m=21—L

leads to an eigenvalue problem
(46) Fm) = gn g7m)
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where A is the same matrix as (3.7)

A= (V2a9i_j)-r<i2i—j<L,

A = (r(_ng,... ,r(L"))T.

If A has an eigenvalue 2~™, then the eigenvector ™ exists. For a
unique solution, we need the correct normalization.
If {#¢¥(x)}scz is orthonormal basis for Vi, then

(4.7) S = (-1l

l

(see Lemma 5.10 in [5]). Relation (4.7) is used to normalize the eigen-
vectors of A correctly.
The first row of (4.6) is 7'(_"[), = 2"2a_g, r(_"L). If 2" vV2a_1 # 1,

then r(_"g = 0 and r(L") = 0 also, since a_; = ar. This condition is

usually satisfied, for example, if ¢ is a Daubechies scaling functicn. In
this case, it suffices to solve an eigenvalue problem of size 2L — 1

(4.8) A" = 2 AF™),
where A is the same as (3.10)

A= (\/2_a2i—j)—L+1Si,2i-jSL—1

Fn) — (T(_n[),+1a .- 17’?—)1)71'

Hence, we have the following theorem, the counterpart of Proposi-
tions 1 and 2 in [2].

THEOREM 4.1. If ¢ is an orthonormal scaling function with compact
support, if the matrix A has an eigenvalue 2", and if 2" v/2a_1, # 1,
then the coefficients rl(") , used for representing nth derivative operators,

can be determined uniquely by solving (4.8) and (4.7).
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Wavelet representation of derivative operators
5. Examples

We compute the nonzero connection coefficients used for representing
derivative operators. The results in this section derived by our approach
are exactly the same as the results derived by Beylkin in [2]. Note that
a;’s here are not the same a;’s in [2]. For each j, a; here is 1/2v/2 times
the a; in [2].

EXAMPLE 5.1. Let ¢ be the Daubechies scaling function with 2
vanishing moments for 19». The length of the support of ¢ is L = 3.
a0 =1/v2, ax1 = 9/16\/5, and ay3 = —1/16+/2. The matrix A of size
2L —1is

0 —1
{16 9 0 1
A=—10 9 16 9 0
16 1 0 9 16

-1 0

Eigenvalues for A are 1,1/2,1/8,.... We have the first and the third

derivatives, but not the second derivative. The values for rl(") are as

follows:

1 1
<3 _ (L _ _hr
r (27 1’0’1’ 2)

EXAMPLE 5.2. Let ¢ be the Daubechies scaling function with 3
vanishing moments for 1. The length of the support of ¢ is L = 5.

a0 = 1/v/2, ay1 = 75/128v/2, ax3 = —25/256v/2, and ays = 3/256/2.
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The matrix A of size 2L — 1 is

(8 —3250 3 \

256 150 0 -25 O 3
1 0 150 256 150 0 —-25 O 3

=— 1 0 —25 0 150 25 150 0 -25 0
256 3 0 -25 0 150 256 150 O
3 0 —-25 0 150 256

3 0 -25 0

\ 3 o)

Eigenvalues for A are 1,1/2,1/4,1/8,1/16,1/32,.... We have from the
first derivative up to the fifth derivative. Since 278 is not an eigenvalue

of A, there does not exist the 6" derivative. The values for 'rl(") are as
follows:

Ay (L 16 58 272 272 83 16 1
2920 1095 365’365’ 365’365’ 1095’ 2920

A _ (3 4 92 8% 20536 % 4 3.
T 560’35 105’105’ 56105’ 105’ 35’ 560

+3) :(_i __?_ _Eg 38 0 38 179 2 3 )T
400° 25’ 200° 25’ 25’ 365’25’ 400
w_ 9 3 T4 84 773 9
r :(—a_>—_7_a——a
160°10° 40°10° 16’10 40’10’ 160
Fo) (3 2 3122, 2381 2 3,
52’13’ 26°13°7 13726° 13’ 52

)T

NUMERICAL DATA. The following was computed using MATLAB
for Daubechies wavelet with M vanishing moments. We note, that

) _ { —rl(") for odd n,

rl(") for even n.
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e The values of rl(") for M = 4 are

—7.9301e — 01
1.9200e — 01
—3.3580e — 02
2.2240e — 03
1.7221e — 04
—8.4085¢e — 07

n=2

~4.1660e + 00
2.6421e + 00
~6.9787e — 01
1.5097e — 01
—1.0573e — 02
—1.6304e — 03
1.5922e — 05

o The values of r{™ for M = 5 are

—8.2591e — 01

2.2882e — 01
—5.3353e — 02

7.4614e — 03
—2.3924e — 04
—5.4047e — 05
—2.5241e — 07
—2.6960e — 10

n=2

—-3.8350e + 00
2.4148¢e + 00
—6.4950e — 01
1.8095¢ - 01
—2.9908e — 02
7.9462e — 04
3.6715e — 04
1.6565e — 06
3.5388¢e — 09
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n=3

0

1.8662¢ + 00
—1.2160e + 00
1.9027e — 01
4.3693e — 03
—4.5959% — 03
8.9764e — 05

n=3

0

2.1240e + 00
—1.4897¢ + 00
3.1853e — 01
—-1.6199¢ — 02
—9.1725e — 03
1.8041e — 03
—3.7343e — 05
—1.5955e — 07



1]
(2]
3]
(4]
(5]
(6]
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e The values of rl(n) for M =6 are

n=1 n=2 n=3

=0 0 —3.6861e + 00 0
=1 —8.5014¢ — 01 2.3119¢ + 00 2.3300e + 00
[ =2 2.5855¢ — 01 —6.3073e — 01 —-1.7317¢ + 00
=3 —7.2441e — 02 2.0491e — 01 4.5892¢ — 01
I=14 1.4546e — 02 —4.9362¢ — 02 —5.6286e — 02
[=5 —1.5886e — 03 6.4781e — 03 —-7.9710e - 03
=6 4.2969¢ — 06 —6.5696e — 05 4.1778¢ — 03
=7 1.2027¢ — 05 —5.4363e — 05 —5.0228¢ — 04
=8 4.2069¢ — 07 —3.4661e — 06 1.1303e — 06
=9 —2.8997e — 09 2.6300e — 08 4.8917¢ — 07
=10 6.9681e — 13 —1.2641e — 11 —4.7024¢ — 10
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