I-IDEALS GENERATED BY A SET IN IS-ALGEBRAS

Young Bae Jun, Eun Hwan Roh and Xiao Long Xin

ABSTRACT. We consider a generalization of [1, Theorem 2.5]. We give a description of the element of $(A \cup B)^l_{\mathcal{I}}$ (resp. $(A \cup B)^r_{\mathcal{I}}$), where A and B are left (resp. right) \mathcal{I} -ideals of an IS-algebra X. For a nonempty left (resp. right) stable subset A of an IS-algebra, we obtain a condition for $(A)^l_{\mathcal{I}}$ (resp. $(A)^r_{\mathcal{I}}$) to be closed. We give a characterization of a closed \mathcal{I} -ideal in an IS-algebra, and show that, in a finite IS-algebra, every \mathcal{I} -ideal is closed.

1. Introduction

The notion of BCK-algebras was proposed by Y. Imai and K. Iséki in 1966. In the same year, K. Iséki [2] introduced the notion of a BCI-algebra which is a generalization of a BCK-algebra. In [5], Y. B. Jun et al. established the notion of an **IS**-algebra which is a generalization of the ring (see also [4]). For the general development of BCK/BCI/IS-algebras, the ideal theory plays an important role.

In this paper, we consider a generalization of [1, Theorem 2.5]. We give a description of the element of $\langle A \cup B \rangle_{\mathcal{I}}^{l}$ (resp. $\langle A \cup B \rangle_{\mathcal{I}}^{r}$), where A and B are left (resp. right) \mathcal{I} -ideals of an **IS**-algebra X. For a nonempty left (resp. right) stable subset A of an **IS**-algebra, we obtain a condition for $\langle A \rangle_{\mathcal{I}}^{l}$ (resp. $\langle A \rangle_{\mathcal{I}}^{r}$) to be closed. We give a characterization of a closed \mathcal{I} -ideal in an **IS**-algebra, and show that, in a finite **IS**-algebra, every \mathcal{I} -ideal is closed.

Received May 6, 1997.

¹⁹⁹¹ Mathematics Subject Classification: 06F35, 03G25, 20M99.

Key words and phrases: **IS**-algebra, stable set, (closed) \mathcal{I} -ideal, \mathcal{I} -ideal generated by a set.

This work was supported by the Basic Science Research Institute Program, Ministry of Education, 1997, Project No. BSRI-97-1406.

2. Preliminaries

By a *BCI-algebra* we mean an algebra (X, *, 0) of type (2,0) satisfying the following conditions for all $x, y, z \in X$:

- (I) ((x*y)*(x*z))*(z*y)=0,
- (II) (x*(x*y))*y=0,
- (III) x * x = 0,
- (IV) x * y = 0 and y * x = 0 imply x = y.

In any BCI-algebra X one can define a partial order " \leq " by putting $x \leq y$ if and only if x * y = 0.

A BCI-algebra X has the following properties for any $x, y, z \in X$:

- (1) x * 0 = x,
- (2) (x * y) * z = (x * z) * y,
- (3) $x \le y$ implies that $x * z \le y * z$ and $z * y \le z * x$.

A nonempty subset I of a BCI-algebra X is called an ideal of X if it satisfies

- (i) $0 \in I$,
- (ii) $x * y \in I$ and $y \in I$ imply $x \in I$ for all $x, y \in X$.

Any ideal I has the property: $y \in I$ and $x \leq y$ imply $x \in I$.

In general, an ideal I of a BCI-algebra X need not be a subalgebra. If I is also a subalgebra of a BCI-algebra X, we say that I is a *closed ideal*, equivalently, an ideal I is closed if and only if $0 * x \in I$ whenever $x \in I$.

DEFINITION 1 (Jun et al. [5]). An **IS**-algebra is a non-empty set X with two binary operations "*" and "." and constant 0 satisfying the axioms

- (V) I(X) := (X, *, 0) is a BCI-algebra.
- (VI) $S(X) := (X, \cdot)$ is a semigroup.
- (VII) the operation "·" is distributive (on both sides) over the operation "*", that is, $x \cdot (y * z) = (x \cdot y) * (x \cdot z)$ and $(x * y) \cdot z = (x \cdot z) * (y \cdot z)$ for all $x, y, z \in X$.

If an **IS**-algebra X contains an element 1_X such that $1_X \cdot x = x \cdot 1_X = x$ for all $x \in X$, then X is called an **IM**-algebra, and we call 1_X the multiplicative identity. If every non-zero element of an **IM**-algebra X has a multiplicative inverse, then X is called an **IG**-algebra. We shall write the multiplication $x \cdot y$ by xy, for convenience.

EXAMPLE 1 (Jun et al. [4]). Let \mathbb{Z} be the set of all integers. Then $(\mathbb{Z}, -, 0)$ is a BCI-algebra and that $\mathbb{Z} = (\mathbb{Z}, -, \cdot, 0, 1)$ is an **IS**-algebra.

EXAMPLE 2 (Jun et al. [5]). Let $X = \{0, a, b, c\}$. Define *-operation and multiplication "." by the following tables

*	0	\boldsymbol{a}	\boldsymbol{b}	c		0	a	\boldsymbol{b}	\boldsymbol{c}
0	0	\overline{a}	b	c	0	0	0	0	0
\boldsymbol{a}	a	0	c	\boldsymbol{b}	\boldsymbol{a}	0	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{c}
\boldsymbol{b}	b	\boldsymbol{c}	0	\boldsymbol{a}	\boldsymbol{b}	0	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{c}
\boldsymbol{c}	c	\boldsymbol{b}	\boldsymbol{a}	0		0			

Then, by routine calculations, we can see that X is an **IS**-algebra.

LEMMA 1 (Jun et al. [4, Proposition 1]). Let X be an IS-algebra. Then we have

- (i) 0x = x0 = 0,
- (ii) $x \le y$ implies that $xz \le yz$ and $zx \le zy$, for all $x, y, z \in X$.

DEFINITION 2 (Ahn et al. [1]). A non-empty subset A of a semi-group $S(X) := (X, \cdot)$ is said to be *left* (resp. right) stable if $xa \in A$ (resp. $ax \in A$) whenever $x \in S(X)$ and $a \in A$. Both left and right stable is two-sided stable or simply stable.

It is clear that if A and B are left (resp. right) stable subsets of S(X), then so is $A \cup B$.

DEFINITION 3 (Jun et al. [5]). A non-empty subset A of an **IS**-algebra X is called a *left* (resp. *right*) \mathcal{I} -ideal of X if

- (i) A is a left (resp. right) stable subset of S(X),
- (ii) for any $x, y \in I(X)$, $x * y \in A$ and $y \in A$ imply that $x \in A$.

Both a left and right \mathcal{I} -ideal is called a two-sided \mathcal{I} -ideal or simply an \mathcal{I} -ideal. If A is a left (resp. right) \mathcal{I} -ideal of an **IS**-algebra X, then $0 \in A$. Thus A is an ideal of I(X).

3. Main results

For convenience, in BCI-algebras, we denote

$$(\dots((x*y_1)*y_2)*\dots)*y_n=x*\prod_{i=1}^n y_i.$$

Especially, we write $x*\prod_{i=1}^n y_i=x*y^n$ if $y_i=y$ for i=1,...,n. If A is a subset of a BCI-algebra X, let $\langle A \rangle$ denote the ideal of X generated by A, that is, the smallest ideal of X containing A. If there exists $x\in A$ satisfying $x\geq 0$, then $\langle A \rangle$ can be described as the set of all $y\in X$ such that $y*\prod_{i=1}^n a_i=0$ for some $a_1,a_2,...,a_n\in A$.

In [1], S. S. Ahn et al. established the \mathcal{I} -ideal generated by a nonempty stable subset of a "·"-commutative **IG**-algebra X.

DEFINITION 4 (Ahn et al. [1, Definition 2.3]). Let X be an **IS**-algebra. For any subset A of X, the intersection of all left (resp. right) \mathcal{I} -ideals of X containing A is said to be the left (resp. right) \mathcal{I} -ideal generated by A, and is denoted by $\langle A \rangle_{\mathcal{I}}^l$ (resp. $\langle A \rangle_{\mathcal{I}}^r$). Both a left and right \mathcal{I} -ideal generated by A is called the \mathcal{I} -ideal generated by A, and is denoted by $\langle A \rangle_{\mathcal{I}}$.

It is clear that if A and B are subsets of an **IS**-algebra X satisfying $A \subseteq B$, then $\langle A \rangle_{\mathcal{I}}^l \subseteq \langle B \rangle_{\mathcal{I}}^l$ (resp. $\langle A \rangle_{\mathcal{I}}^r \subseteq \langle B \rangle_{\mathcal{I}}^r$), and if A is a left (resp. right) \mathcal{I} -ideal of X, then $\langle A \rangle_{\mathcal{I}}^l$ (resp. $\langle A \rangle_{\mathcal{I}}^r) = A$.

PROPOSITION 1 (Ahn et al. [1, Theorem 2.5]). Let X be a "·"-commutative **IG**-algebra and A a nonempty stable subset of S(X). Then

$$\langle A \rangle_{\mathcal{I}} = \{ x \in X | \exists a_1, a_2, ..., a_n \in A \text{ and } \exists r_1, r_2, ..., r_n \in X \setminus \{0\} \text{ such that } r_n(...(r_2(r_1(x*a_1)*a_2)*...)*a_n) = 0 \}.$$

In Proposition 1, the condition of X is too strong. So we feel the need to weaken the condition of X. In the following theorem, we will do it, and the result is a generalization of Proposition 1.

THEOREM 1. Let X be an **IS**-algebra and A a nonempty left (resp. right) stable subset of S(X). Then

$$\langle A \rangle_{\mathcal{I}}^l \text{ (resp. } \langle A \rangle_{\mathcal{I}}^r) = \{ x \in X | x * \prod_{i=1}^n a_i = 0 \text{ for some } a_1, a_2, ..., a_n \in A \}.$$

Proof. Let A be a nonempty left (resp. right) stable subset of S(X) and denote

$$B := \{x \in X | x * \prod_{i=1}^{n} a_i = 0 \text{ for some } a_1, a_2, ..., a_n \in A\}.$$

We first claim that B is a left (resp. right) stable subset of S(X). Let $x \in S(X)$ and $b \in B$. Then there exist $a_1, a_2, ..., a_n \in A$ such that $b * \prod_{i=1}^{n} a_i = 0$. It follows that

$$xb * \prod_{i=1}^{n} (xa_i) = x(b * \prod_{i=1}^{n} a_i) = x0 = 0$$

(resp.
$$bx * \prod_{i=1}^{n} (a_i x) = (b * \prod_{i=1}^{n} a_i)x = 0x = 0$$
).

Since A is left (resp. right) stable, $xa_i \in A$ (resp. $a_ix \in A$) for i = 1, 2, ..., n. Hence $xb \in B$ (resp. $bx \in B$), which shows that B is left (resp. right) stable. Now let $x * y \in B$ and $y \in B$. Then there exist $a_1, ..., a_n, b_1, ...b_m \in A$ such that

$$(x*y)*\prod_{i=1}^{n}a_{i}=0 \text{ and } y*\prod_{j=1}^{m}b_{j}=0.$$

Using (2) n-times repeatedly in the first equation above, then

$$(x * \prod_{i=1}^{n} a_i) * y = 0 \text{ or } x * \prod_{i=1}^{n} a_i \le y.$$

It follows from (3) that $(x * \prod_{i=1}^{n} a_i) * \prod_{j=1}^{m} b_j \leq y * \prod_{j=1}^{m} b_j = 0$ so that $(x * \prod_{i=1}^{n} a_i) * \prod_{j=1}^{m} b_j = 0$. Hence $x \in B$ and B is a left (resp. right)

 \mathcal{I} -ideal of X. Obviously, $A \subseteq B$. Let C be a left (resp. right) \mathcal{I} -ideal containing A. To show $B \subset C$, let x be an element of B. Then $x*\prod_{i=1}^n a_i = 0$ for some $a_1, ..., a_n \in A$. Since $0 \in C$, we have $x*\prod_{i=1}^n a_i \in C$. Since $a_1, ..., a_n \in C$, it follows by using Definition 3(ii) repeatedly that $x \in C$. Thus $B \subset C$ and $B = \langle A \rangle_{\mathcal{I}}^l$ (resp. $\langle A \rangle_{\mathcal{I}}^r$), ending the proof. \square

We know that, in the following example, the union of any left (resp. right) \mathcal{I} -ideals A and B may not be a left (resp. right) \mathcal{I} -ideal of an **IS**-algebra X.

EXAMPLE 3. Let $X = \{0, a, b, c\}$. Define *-operation and multiplication "." by the following tables

*	0	\boldsymbol{a}	b	c		0			
0	0	0	\overline{b}	b	0	0	0	0	0
a	a	0	\boldsymbol{c}	b	\boldsymbol{a}	0	\boldsymbol{a}	0	\boldsymbol{a}
b	b	\boldsymbol{b}	0	0	b	0	0	\boldsymbol{b}	\boldsymbol{b}
c	c	\boldsymbol{b}	\boldsymbol{a}	0	\boldsymbol{c}	0	a	\boldsymbol{b}	c

It is easy to prove that X is an IS-algebra, and $\{0, a\}$ and $\{0, b\}$ are \mathcal{I} -ideals of X, but $\{0, a\} \cup \{0, b\} = \{0, a, b\}$ is not an \mathcal{I} -ideal of X.

The following theorem gives a description of the element of $\langle A \cup B \rangle_{\mathcal{I}}^l$ (resp. $\langle A \cup B \rangle_{\mathcal{I}}^r$), where A and B are left (resp. right) \mathcal{I} -ideals of an **IS**-algebra X.

THEOREM 2. Let A and B be left (resp. right) \mathcal{I} -ideals of an IS-algebra X. Then

$$\begin{split} &\langle A \cup B \rangle_{\mathcal{I}}^l \ (\text{resp. } \langle A \cup B \rangle_{\mathcal{I}}^r) \\ &= \{x \in X | (x*a)*b = 0 \ \text{for some} \ a \in A \ \text{and} \ b \in B\}. \end{split}$$

Proof. Denote

$$K := \{x \in X | (x * a) * b = 0 \text{ for some } a \in A \text{ and } b \in B\}.$$

Clearly, $K \subseteq \langle A \cup B \rangle_{\mathcal{I}}^l$ (resp. $\langle A \cup B \rangle_{\mathcal{I}}^r$). Let $x \in \langle A \cup B \rangle_{\mathcal{I}}^l$ (resp. $\langle A \cup B \rangle_{\mathcal{I}}^r$). Then, by Theorem 1, there exist $q_1, ..., q_n \in A \cup B$ such

that $x*\prod_{i=1}^n q_i=0$. If $q_i\in A$ (resp. B) for all i=1,...,n, then $x\in A$ (resp. B), and so $x\in K$ since (x*x)*0=0 (resp. (x*0)*x=0). If some of $q_1,...,q_n$ belong to A and others belong to B, we may assume that $q_1,...,q_k\in A$ and $q_{k+1},...,q_n\in B$ for $1\leq k< n$, without loss of generality. Let $b=x*\prod_{i=1}^k q_i$. Then

$$b*\prod_{j=k+1}^{n}q_{j}=(x*\prod_{i=1}^{k}q_{i})*\prod_{j=k+1}^{n}q_{j}=x*\prod_{i=1}^{n}q_{i}=0,$$

and so $b \in B$. Now let $a = x * (x * \prod_{i=1}^{k} q_i)$, i.e., a = x * b. Then

$$a * \prod_{i=1}^{k} q_i = (x * (x * \prod_{i=1}^{k} q_i)) * \prod_{i=1}^{k} q_i$$

$$= (x * \prod_{i=1}^{k} q_i) * (x * \prod_{i=1}^{k} q_i)$$

$$= 0,$$
 [by (III)]

and hence $a \in A$ because A is a left (resp. right) \mathcal{I} -ideal and $q_i \in A$ for i = 1, ..., k. Noticing that (x * a) * b = (x * b) * a = a * a = 0, we have $x \in K$, which proves that $\langle A \cup B \rangle_{\mathcal{I}}^{l}$ (resp. $\langle A \cup B \rangle_{\mathcal{I}}^{r}$) $\subseteq K$. This completes the proof.

DEFINITION 5. Let X be an **IS**-algebra. A left (resp. right) \mathcal{I} -ideal A of X is said to be closed if $0 * a \in A$ whenever $a \in A$.

We note that, in Example 2, $\{0,c\}$ is a closed \mathcal{I} -ideal of X. We give a characterization of a closed \mathcal{I} -ideal in an **IS**-algebra.

THEOREM 3. Let A be a nonempty subset of an **IS**-algebra X. Then A is a closed left (resp. right) \mathcal{I} -ideal of X if and only if

- (i) A is a left (resp. right) stable subset of S(X),
- (ii) if $x * z \in A$, $y * z \in A$ and $z \in A$, then $x * y \in A$.

Proof. Necessity is obvious. Let A be a nonempty subset of X satisfying (i) and (ii). Let $x*y \in A$ and $y \in A$. Note that every left (resp. right) stable set contains the zero element 0. Since $0*0, y*0 \in A$, it follows from (ii) that $0*y \in A$. By using (ii) again, we get $x = x*0 \in A$. This proves that A is a closed left (resp. right) \mathcal{I} -ideal of X.

For any subset A of an **IS**-algebra X, denote

$$L(A) := \{0 * (0 * a) | a \in A\}.$$

Clearly, $L(A) \subseteq \langle A \rangle_{\mathcal{I}}^{l}$ (resp. $\langle A \rangle_{\mathcal{I}}^{r}$).

THEOREM 4. Let A be a nonempty left (resp. right) stable subset of an IS-algebra X. If $0 * a \in L(A)$ for all $a \in A$, then $\langle A \rangle_{\mathcal{I}}^{l}$ (resp. $\langle A \rangle_{\mathcal{I}}^{r}$) is a closed left (resp. right) \mathcal{I} -ideal of X.

Proof. Let $x \in \langle A \rangle_{\mathcal{I}}^l$ (resp. $\langle A \rangle_{\mathcal{I}}^r$). Then there exists $a_1, a_2, ..., a_n \in A$ such that $x * \prod_{i=1}^n a_i = 0$. It follows that

$$(0*x)*\prod_{i=1}^{n}(0*a_{i}) = ((x*\prod_{i=1}^{n}a_{i})*x)*\prod_{i=1}^{n}(0*a_{i})$$

$$= ((x*x)*\prod_{i=1}^{n}a_{i})*\prod_{i=1}^{n}(0*a_{i}) \quad [by (2)]$$

$$= (0*\prod_{i=1}^{n}a_{i})*\prod_{i=1}^{n}(0*a_{i}) \quad [by (III)]$$

$$= 0.$$

so that $0 * x \in \langle A \rangle_{\mathcal{I}}^{l}$ (resp. $\langle A \rangle_{\mathcal{I}}^{r}$) since $0 * a_{i} \in L(A) \subseteq \langle A \rangle_{\mathcal{I}}^{l}$ (resp. $\langle A \rangle_{\mathcal{I}}^{r}$) for i = 1, 2, ..., n. Hence $\langle A \rangle_{\mathcal{I}}^{l}$ (resp. $\langle A \rangle_{\mathcal{I}}^{r}$) is a closed left (resp. right) \mathcal{I} -ideal of X.

Theorem 5. In a finite IS-algebra, every \mathcal{I} -ideal is closed.

Proof. Let X be an **IS**-algebra with |X| = n, where n is a positive integer, and let A be an \mathcal{I} -ideal of X. It is sufficient to show that $0 * a \in A$ whenever $a \in A$. For any $a \in A$, consider the following elements

$$0 * a^0, 0 * a^1, 0 * a^2, \dots, 0 * a^n$$
, where $0 * a^0 = 0$.

Since |X| = n, there exist integers s and t with $0 \le s < t \le n$ such that $0 * a^s = 0 * a^t$. It follows that

$$0 = (0 * a^{t}) * (0 * a^{s})$$
 [by (III)]
= $((0 * a^{s}) * a^{t-s}) * (0 * a^{s})$
= $((0 * a^{s}) * (0 * a^{s})) * a^{t-s}$ [by (2)]
= $0 * a^{t-s}$, [by (III)]

so that $(0*a)*a^{t-s-1} = 0*a^{t-s} = 0 \in A$. Since A is an \mathcal{I} -ideal, by Definition 3(ii) we have $0*a \in A$. This completes the proof.

COROLLARY 1. Let A be a nonempty subset of a finite IS-algebra X. Then $\langle A \rangle_{\mathcal{I}}$ is a closed \mathcal{I} -ideal of X.

THEOREM 6. Let A be a left (resp. right) \mathcal{I} -ideal of an **IS**-algebra X such that $\forall a \in A$, $\exists a' \in A$ and $x \in X$ satisfying a = xa' (resp. a = a'x). Then A is closed.

Proof. Let A be a left (resp. right) \mathcal{I} -ideal of an **IS**-algebra X such that $\forall a \in A, \exists a' \in A \text{ and } x \in X \text{ satisfying } a = xa' \text{ (resp. } a = a'x\text{)}.$ Then, for any $a \in A, 0 * a = 0 * xa' = (0 * x)a' \in A \text{ (resp. } 0 * a = 0 * a'x = a'(0 * x) \in A)$, since A is left (resp. right) stable. Thus A is a closed left (resp. right) \mathcal{I} -ideal of X.

COROLLARY 2. In an IM-algebra, every I-ideal is closed.

Y. B. Jun, E. H. Roh and X. L. Xin

References

- S. S. Ahn and H. S. Kim, A note on *I-ideals in BCI-semigroups*, Comm. Korean Math. Soc. 11 (1996), 895-902.
- [2] K. Iséki, An algebra related with a propositional calculus, Proc. Japan. Acad. 42 (1966), 351-366.
- [3] K. Iséki, On BCI-algebras, Math. Seminar Notes (presently Kobe J. Math.) 8 (1980), 125-130.
- [4] Y. B. Jun, S. M. Hong and E. H. Roh, BCI-semigroups, Honam Math. J. 15 (1993), 59-64.
- [5] Y. B. Jun, X. L. Xin and E. H. Roh, A class of algebras related to BCI-algebras and semigroups, Soochow J. Math. (submitted).

DEPARTMENT OF MATHEMATICS EDUCATION, GYEONGSANG NATIONAL UNIVERSITY, CHINJU 660-701, KOREA

E-mail: ybjun@nongae.gsnu.ac.kr