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STRONG LAWS FOR ARRAYS
OF RANDOM VARIABLES

So00 HAk Sung

ABSTRACT. In this paper, we obtain an analogue of law of the it-
erated logarithm for an array of independent, but not necessarily
identically distributed, random variables under some moment con-
ditions of the array.

1. Introduction

Let {Xpi, 1 <i < n, n > 1} be an array of independent, but not
necessarily identically distributed, random variables with EX,; = 0
and EX?, < 0o for 1 <i < n and n > 1. Define S, = S 1 Xni and
s2 =Y 7" | EX2,. In the case of i.i.d. Bernoulli random variables { Xy}
with P(X1; = £1) = 1/2, Hu [2] showed that
(1)

lim sup il =1las. and liminf Sn

— —————=-1as.
n-seo /252 log s2 n—=oo /252 log s2

Hu and Weber [3] proved the result (1) under the weaker condition
that {X,;} is an array of i.i.d. random variables with EX;; = 0 and
ElX11]|* < co. Qi [4] proved that for an array of i.i.d. random variables
{Xn:}, (1) holds if and only if EX;; = 0 and E|X11|*(logt [X11])~2 <
00. Note that from (1) it follows that

. Sn
lirn sup

n—soo /252 loglog s2
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so Hartman and Wintner’s law of the iterated logarithm cannot hold
for arrays.

When the array {X,;} is independent, but not necessarily identi-
cally distributed, random variables, some law of the iterated logarithm
type theorems can be found in Baxter [1], Rosalsky [5], Rosalsky and
Teicher [6], Sung [7], and Teicher [8]. Recently, Sung [7] proved that
Kolmogorov’s law of the iterated logarithm does not hold for arrays.

In this paper, we obtain an analogue of law of the iterated logarithm
for an array {X,;} of independent, but not necessarily identically dis-
tributed, random variables with s2 ~ n and sup,, ; EX}; < co.

2. Main results

To prove our main theorem, we need the following lemma.

LEMMA 1 (Sung [7]). Let {Xn:, 1 <i<n, n>1} be an array of
independent random variables with EX,; =0for1<i<nandn>1.
Set Sp = > Xni and s2 = Y  EX2. Let {k,} be a sequence
of positive constants such that k, — 0 as n — o0o. Suppose that the
following conditions hold.

() s2=nforn>1.

(i) | Xni| < kny/n/Vlogn as. for1 <i<nandn > 1.

Then

limsup =1 a.s.

S
nooo v2nlogn
The following theorem states that the condition (ii) of Lemma 1 can
be replaced by simple moment conditions of the array.

THEOREM 2. Let {X,;, 1 < i < n, n > 1} be an array of inde-
pendent random variables with EX,,; = 0 for1 <7 <nandn > 1.
Set Sp = Y 51 Xpni and s2 = 3 | EX2,. Suppose that s2 ~ n and
sup,, ; EX; < co. Then

lim sup 1 as.

Sn
nooo V2nlogn
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Proof. For 2 < q < 4, define X]; = Xp:I{|Xni] < nl/9). Observe
that, by the Cauchy-Schwarz inequality and the Markov inequality, for
all<i<nandn>1

EX7I(1X i) > nM9) < (BX3)Y2(P(| X > n/9))1/2

EX?
4\1/2 1/2
@ < (mxaya Dy
sup,, ; EX},
< n?/q

Since sup, ; EX}; < oo, it follows by (2) that Y i, EX2,I(|X,;| >

nt9)/n — 0 and 3.7 1(EXmI(IXm( > nl/9)?2/n — 0 as n — oo.
Thus Y 7, Var(X};) ~ n, since

n n
n~s? = ZE( )2+ EXZI(|Xni| > n'/9)
=1

Var(X!,) + i(EX D2+ Z EXZI(|Xni| > n'/9)

i=1 i=1

I
M: A NgERD

Var(X.;) + Z(Exn,z (| Xni| > nt/9))?
i=1

-,
I
—

+ Y EXZLI(|Xni| > nt/9).

Let ¢,° = 30 Var(X.,) and Yy = a(X); — EX],;)/s,. Then
EYM = 0, Z?:l EY,,gi =n, and maxj<i<n Ile S 2\/7—1711/‘1/3:1 ~ 2n1/‘1
= o(v/n/y/logn). Thus, {¥yi, 1 <i < n, n > 1} satisfies the conditions
of Lemma 1, and so

n
Y
limsup __Z__z__—_l__'l« =1 as.

nooo V2nlogn
: !
Since si, ~ \/n,

i1 (X — EX0)
li
(3) 1Trlr}+s°1ip V2nlogn
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Using (2) and EX,; = 0 for all n and i, it follows that

| > i1 EXni _ | >ty BEXnil (| Xni] > nl/9)|
vnlogn vnlogn
Zz LEXZI(| X > nl/9)
nt/4y/nlogn
sup,, ; EX3,
(1ogn)1/2n—1/2+1/q+2/q

-0,

since ¢ < 4. Combining this and (3) gives

Zn 1 X‘r,u
limsup S2=0——=
n—oo V2nlogn
To finish the proof, it suffices to show that
E?=1(Xm' — Xr’u‘)
vnlogn

which, by the Borel-Cantelli lemma, is equivalent to the fact for every
e>0

n=1

— 0 a.s.,

vnlogn

Fix € > 0. Let X", = X I(| Xni] > ev/nlogn/N) and X! = X,;I(n'/9
< |Xni| € e/nlogn/N), where N is a positive integer to be chosen
later. Then X,; — X/, = X/, + X”. Hence, to prove (4), it is enough
to show that

(5) Z (Z\;.;_lag; >€)<oo

and
(6) Z (Iij%:b—g—x:, >e)<oo.

n=1

772



Strong laws

From the definition of X/, and the Markov inequality, we get

P(IXa 5 ) < p (o (15> /)

vnlogn N
s ev/nlogn
< , Yy
< ; P <|Xm| > = )
N4
< P S
- s:,? EXni ein(logn)?’

and so (5) holds.

Since | X"/ < ey/nlogn/N, i, |X/il/v/nlogn > € implies that
there are at least N nonzeros X" for i = 1,---,n. Hence, by the
Markov inequality, we have

S, ) < p (Sl
P 1= ni > < P 1= nt
( Vvnlogn €)= vnlogn =€

ki< <kn
< Z P(Ithi > nl/q’ ce aankNi > ,nl/q)

ki<--<kn
= Y P(IXuk| > 29 P(1 Xy | > 09)
ki<---<kn
EX;{,cl .. -EX4kN

< Z n4N/q =

k1<<k~N

(n) Supn,i(EXf{i)N

N n4N/q
SuPn,i(EX:lzi)N
- n(4/q_1)N ’

where the summation Zk1<--~<kn is taken for all N-tuples (k1, - ,kn)
with ky < --- < ky and k; = 1,-- - ,n for each 4. Thus, choosing N such
that (4/q — 1)N > 1, (6) holds. 0
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COROLLARY 3. Let {X,;, 1 <7 < n, n > 1} be as in Theorem 2.
Assume that 0 < a < EX2, for all n and i, and sup,, ; EX}, < co. Then

n
X
limsup ——————Z‘“l L

n—oo /252 logn

Proof. Let Yp; = /nX,i/s for all n and i. Then {Y,,;} satisfies the
conditions of Theorem 2. Thus, the result follows from Theorem 2. O

=1 a.s.

REMARK. Hu and Weber ([3], Theorem 3) proved Corollary 3 under
the stronger condition that for each n, X,i,---,Xn, are identically
distributed and sup,, ; E|Xni)*® < 0o for some & > 0.

The following example shows that Corollary 3 does not hold if the
condition 0 < a < EX2; in Corollary 3 is removed

EXAMPLE. Let {Yn;, 1 <i <n, n> 1} be an array of independent
Bernoulli random variables with

logyn

PY,;=1)= =1-P(Ypi=0)for1<i<nandn>1,
where logy t = loglogt for ¢t > 1. Let X,; = Y — l—°§nz—7—‘ for all n and
i. Then |Xpi| < 1, EXp; = 0, and EX3; = '%2%(1  lo&an) Thyg
{Xn:} satisfies the conditions of Corollary 3, except for the condition
0 < a < EX?,. But, it follows from Example 1 in Rosalsky ([5], p. 388)
that

J Xni 1'1— Yni -1
lim sup —————~Z’=1 = limsup 2oim ogyn/n)
nsoo (/2s2logn  nooo 4/2logyn(l —logyn/n)logn
n

= lim sup _—"—_"—“Zi=1 Ynz

n-oo /2logy,nlogn

» Yol

= limsup izt Ynslogyn logn

n—oco logn log, ny/2log, nlogn
=00 a.s.
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