고압하에서의 이소퀴놀린과 브롬화 벤질류의 반응에 관한 속도론적인 연구

金永哲*·林鍾紀·崔成瑢

한양대학교 화학과 (1997, 11, 27 접수)

Kinetic Study on the Reaction of para-substitued Benzylbromide with Isoquinoline under High Pressure

Young Cheul Kim*, Jong Wan Lim, and Sung Yong Choi Department of Chemistry, Hanyang University, Seoul 133-791, Korea (Received November 27, 1997)

요 약. Acetonitrile 용매내에서 isoquinoline과 치환된 benzylbromide의 반응을 압력변화(1~1000 bar)에 따라 반응속도론적으로 연구하였다. 속도상수로부터 활성화파라미터들을(ΔV^* , $\Delta \beta^*$, ΔH^* , ΔS^* , ΔG^* , Ea) 구하였다. 온도가 증가함에 따라 속도상수는 증가하고, ΔV^* , $\Delta \beta^*$, 및 ΔS^* 는 모두 음의 값을 나타내었다. 치환기효과와 실험 결과로 부터 반응메카니즘을 고찰한 결과 전체적인 반응은 $S_N 2$ 반응메카니즘으로 진행되나, 치환체와 압력변화에 따라 전이상태 구조에 약간의 변화가 있었다.

ABSTRACT. Kinetic studies on the reaction of isoquinoline with para-substituted benzylbromides were conducted under various pressures (1~1000 bar) in acetonitrile. From the rate constants obtained, the activation parameters such as ΔV^* , $\Delta \beta^*$, ΔH^* , ΔS^* , ΔG^* and Ea were evaluated. Reaction rate increasing the pressure and temperature. The activation compressibility coefficient and the activation entropy showed negative values. From the substituent effect and the results, it was found that the reaction proceeds through $S_N 2$ mechanism, but the structure of transition state was slightly changed with subtituents and pressure.

서 론

전이상태 구조의 규명을 위하여 친핵성 치환반응에 대한 반응속도론적 연구가 많이 이루어지고 있으나, 대부분의 경우 대기압에서의 치환기효과나 용매효과를 연구하여 반응메카니즘을 제안하고 있다. 그러나 높은 압력을 장시간 유지할 수 있는 기술이 Bridgman¹에 의해 개발됨에 따라서 최근 고압하에서 가용매 분해반응과 중성반응물을 이온성 생성물로 전환시키는 연구들이³⁻⁸ 많이 이루어지고 있다. 고압하에서 반응속도를 측정하여 활성화 부피변화 ΔV^{*}를 결정함으로써, 전이상태의 구조규명에 많은 정보를 얻을 수 있으며, 보다 정확한 반응메카니즘을 제안할 수 있다. 특히 Hyne⁹과 그 공동 연구자들은 다른 파라미터들 보다 활정화 부피 및 활성화 압축률

계수의 중요성을 제안하였다.

Evans와 Polanyi¹⁰ 등 여러 연구자들은 ΔV⁺의 성질을 반응분자 자체의 부피변화와 용매 분자와의 작용에 의한 부피변화로 나누어서 상세히 연구하였다. 특히 전이상태에서 용매분자의 전기적일그러짐효과 (electrostriction effect)가 중요함을 설명하였다. Tokura¹¹와 Haberfield는 고압하에서 pyridine 의 반응에 대한 용매 효과를 연구하였으며, Kazuhiro 등은 1-aryl-1-methylethylchloride의 가용매분해반응에 대한 압력과 치환기 효과를 폭넓게 연구하였다.

본 연구에서는 여러 압력하에서 치환된 벤질류와 이소퀴놀린파의 반응에 대한 속도상수를 측정하여, 이로부터 각 조건에서의 활성화파라미터들(ΔV*, Δβ*, ΔH*, ΔS*, ΔΘ* and Ea)을 구하고, 치환체 변 화에 따른 치환기 효과를 Hammett 관계식에 적용하여 전이상태의 구조와 반응메카니즘을 규명하였다.

실 현

시약 및 기기. Acetonitrile는 Merck제를, isoquinoline, benzylbromide 및 p-methylbenzylbromide는 Aldrich제(HPLC grade)를 사용하여 고진공장치³(10⁻⁵~10⁻⁶ torr)내에서 여러번 degassing한 후 P₂O₅ column을 통하여 vacuum transfer 하여 진공정제하였고, p-nitrobenzylbromide(Aldrich, HPLC grade)는 petroleum ether에 용해시킨 후 재결정하여 사용하였다. 반응용액의 전기전도도를 측정하기 위하여 백급 전국으로 된고압전도도셀, 고압용기 및 고압장치(Swiss NOVA)를 conductance meter(YSI model 32, Ohio)와 recorder (KIPP and ZONNEN BD 60, Holland)에 연결하여 사용하였다.

반응속도의 측정 및 압력과 온도와의 관계, 이소 귀놀린과 파라치환 브롬화벤질류의 반응은 Menschutkin반응 12 의 결과로 염이 생성됨으로서 반응용액의 전기전도도가 중가한다. 이소퀴놀린의 농도를 $10^{-2}\sim10^{-3}$ M 범위에서 변화시키면서 일정한 온도에서 반응을 진행시켰다. 친핵체인 이소퀴놀린의 농도를 반응기질의 농도보다 매우 크게하여 유사일차반응으로 진행시켜, Guggenheim 13 식에 의하여 유사일차반응 속도상수 (k_1) 를 최소자승법으로 결정하였다. 또한, isoquinoline의 농도변화에 따른 k_1 값으로부터 2차 반응속도상수 k_2 를 다음식에 의하여 구하였다.

$$k_1 = k_2$$
 [isoquinoline] (1)

반응속도의 압력 및 온도의존성은 여러 압력 및 온도에서의 2차 반응속도상수 k_2 를 $Table\ 1$ 에 수록 하였다.모든 경우에서 k_2 는 온도와 압력증가에 따라 함께 증가함을 알았다.

전이상태이론에 따르면 활성화 부피 ΔV*는 다음 과 같이 반응속도 상수의 압력 의존성에 관계된다.

$$\Delta V^{-} = -RT(\partial \ln k_2/\partial p)_T \tag{2}$$

 ΔV^* 를 계산하기 위하여 $\ln k_2$ 와 압력 p의 관계를 고찰해 보면 k_2 와 p에 대한 정확한 이론식이 알려져 있지 않고 여러 실험식들이 제안되어 있다. 본 실험 의 결과에서는 $\ln k_2$ 대 p의 관계가 $2^{\frac{1}{2}}$ 한 함수꼴인 (3)

Table 1. Second-order rate constants (k₂) for the reaction of para-substituted benzylbromides with isoquinoline in acetonitrile at 20, 25 and 30 °C under various pressures

Y-C ₆ H	Temp _ (°C)	$k_2 \times 10^3 \ (l \cdot mol^{-1} \cdot s^{-1})$							
₄CH ₂ Br		1 bar	200 bar	500 bar	1000 bar				
	20	0.799	0.939	1.080	1.261				
p -CH $_3$	25	0.997	1.115	1.313	1.479				
	30	1.212	1.357	1.535	1.667				
	20	0.582	0.722	0.864	1.046				
p-H	25	0.776	0.903	1.046	1.210				
	30	0.952	1.112	1.213	1.382				
	20	0.392	0.517	0.651	0.835				
p-NO ₂	25	0.535	0.659	0.780	0.949				
	30	0.676	0.801	0.944	1.104				

식이 가장 적합하였으며

$$\ln k_2 = A + Bp + Cp^2 \tag{3}$$

(3)식의 적합성은 이미 밝혀진 바 있다. (3)식으로 부터 (2)식은 다음과 같이 되며

$$\Delta V^{+} = -RT(B + 2Cp) \tag{4}$$

대기압(1기압) 하에서의 활성화부피 ΔV_0^{\dagger} 는 다음 과 같이 주어진다.

$$\Delta V_0^+ = -RTB \tag{5}$$

또한 ΔV^{+} 의 압력의존성, 즉 활성화 압축률계수 ΔB^{+} 는 다음과 같다.

$$\Delta \beta^{+} = -(\partial \Delta V^{+}/\partial p)_{T} = 2RTC$$
 (6)

2차 최소자숭법에 의해 (3)식의 계수 B와 C값으로 부터 ΔV_0^+ , ΔV^+ 및 $\Delta \beta^+$ 를 계산하여 Table~2에 중합하였다.

결과 및 고찰

이소퀴놀린과 브롬화벤질류의 반응. 본 연구에서 기질인 보름화벤질류의 농도는 모두 5.614×10⁻⁴ M로 하였으며, 친핵체인 이소퀴놀린의 농도는 6.88×10⁻², 8.19×10⁻² 그리고 10.3×10⁻² M로 반응시켰다. 동일한 용매(아세토니트릴) 내에서 온도를 20, 25 및 30°C로 유지하며 여러 압력(1, 200, 500, 1000 bar)에서 전기전도도법을 사용하여 일정한시간간격으로 증가하는 전도도를 측정하였다.

Y-C₀H₄CH₂Br	Temp (°C)		$-\Delta\beta^{+}\times10^{3}$			
		1 bar*	200 bar	200 bar 500 bar		(mL·mol ⁻¹ ·bar ⁻¹)
	20	18.5	15.4	10.7	2.93	1.56
p-CH ₃	25	17.0	14.2	9.82	2.58	1.45
	30	15.6	12.6	7.98	1.25	1.43
	20	24.6	20.3	13.8	3.08	2.15
р-Н	25	18.7	15.5	10.8	2.86	1.58
	30	15.7	13.0	8.88	2.06	1.36
p-NO₂	20	32.0	26.5	18.2	4.27	2.73
	25	23.6	19.7	13.7	3.84	1.98
	30	21.4	17.7	12.1	2.80	1.86

Table 2. Activation volume parameters for the reaction of para-substituted benzylbromides with isoquinoline in acetonitrile at 20, 25 and 30 °C under various pressures

유사 1차반용속도상수(k_{obs})는 이소퀴놀린과 보름 화밴질류에 대한 ·ln(\lambda_o-\lambda_l)와 시간 t와의 관계로부터 구하였으며, 그로부터 2차반응속도상수 (k₂) 값들을 계산하여 Table 1에 나타내었다. 여기서 2차반응속 도상수는 온도와 압력 증가에 따라 증가하고, 보름 화밴질류에서 전자주계 치환기(p-CH₃)가 치환된 경 우 더욱 증가함을 알 수 있었으며, 또한 온도가 증가 함에 따라서 전자받게 치환기(p-NO₂)가 치환된 경우 에는 전자주게 치환기(p-CH₃)와 비교할 때 반응속도 상수가 감소하였다.

반응속도의 압력 의존성. 이소퀴놀린과 치환된 브롬화벤질류(p-CH₃, p-H, p-NO₂)의 반응에 대한 활성화부피(ΔV^*) 값을 온도와 압력변화에 따라 Table 2에 종합하였다. 그리고 압력과 2차속도상수 와의관계를 Fig. 1에 나타내었다. 일반적으로 활성화부피 ΔV^* 는 반응초기(V_i)와 전이상태(V_i) 사이의 분몰부피변화 11 로 다음과 같다.

$$\Delta V^{\pm} = \bar{V}_1 - \bar{V}_i \tag{7}$$

(2) 식에 의해 $\Delta V^{\dagger} < 0$ 이면, 즉 전이상태의 부피가 초기상태의 부피보다 작으면 반응속도는 압력증가에 따라 빨라지고, $\Delta V^{\dagger} > 0$ 이면 느려진다. Table 2에 나타난 ΔV^{\dagger} 값을 보면 모두 음의 값을 보이고 있으며 $|-\Delta V^{\dagger}|$ 는 압력증가에 따라 감소하고, 또한 온도증가에 따라 감소하며, 기질의 치환기에 따라 $p\text{-}CH_3 < p\text{-}H < p\text{-}NO_2$ 순으로 증가하고 있다. 이는 압력증가에 따라, 용매와의 electrostriction 효과의 감소에 의하며,

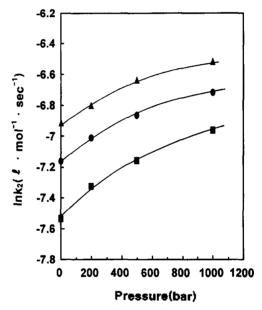


Fig. 1. Pressure dependence of lnk₂ for the reaction of isoquinoline with para-substituted benzylbromide in the actonitrile at 25 °C. (■: p-NO₂ •: p-H ★: p-CH₃)

p-NO₂ 치환기의 경우는 전이상태에서의 전하편재화 효과에 의한 electrostriction 효과가 더욱 크게 작용하 기 때문이다. 또한 ΔV^{+} 는 반응물 자체의 부피변화 (ΔV_{r}^{+})와 전이상태에서의 반응물질과 용매와의 작용 을 나타내는 electrostriction 효과로 인한 용매분자의 재배열에 의한 부피 변화(ΔV_{r}^{*})로 구분할 수 있다.¹⁰

$$\Delta V^{+} = \Delta V_{s}^{+} + \Delta V_{s}^{+} \tag{8}$$

반응과정에서 이온의 생성이나 소멸이 일어나지

 $^{^{\}bullet}$ – ΔV_0^{\dagger} at 1 atm

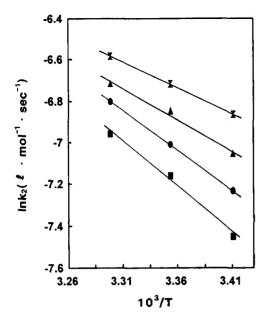


Fig. 2. Arrhenius plots for the reaction of isoquinoline with benzylbromide in the acetonitrile under various pressures. (♣: a bar ♠: 200 bar ♠: 500 bar ★: 1000 bar)

않는 반응에서는 ΔV ,*에 의하여 ΔV *가 결정되고, 이온이 관여하는 반응에서는 ΔV ,*에 의해서 ΔV *가 결정된다. 이것은 이온성 용매분자를 끌어당기는 electrostriction 효과 때문이며, 이러한 현상 때문에 용매의 부피에 큰 변화가 있다고 '보고되었으며, 14,15 전이상태에서 전하분리가 일어나는 반응의 경우 ΔV ,* 값(-30~-50 ml·mole $^{-1}$)과 ΔS *값(-20~-30 cal K^{-1} ·mol $^{-1}$)은 큰 값을 나타낸다고 이미 보고된 바 있다. $^{16-17}$ 따라서 ΔV * 값이 음이면 전이상태에서의

용매효과나 결합형성에의한 메카니즘으로 ΔV_s^+ 에 의해 지배되며, ΔV^+ 값이 양이면 결합의 파괴에 의한 메카니즘으로 ΔV_r^+ 에 의해 지배된다. 본 연구에서는 전체적으로 $\Delta V^+<0$ 의 값을 나타내고 있는데, 이는 전이상태에서 브롬화밴질류의 C-Br 결합 길이가 늘어남에 따른 부피변화보다 극성이 큰 용매인 아세토니트릴 분자에 의한 electrostriction 효과에 따른 부피변화 감소가 더 큰 영향을 나타낸다고 생각된다.

활성화부피 ΔV^{+} 의 압력의존성인 활성화압축률계수 $\Delta \beta^{+}$ 값은 Table 2에서와 같이 모두 음의 값을 나타내고 있는데, 이는 압력증가에 따라 $|-\Delta V^{+}|$ 의 변화율이 감소하고 있음을 뜻한다.

열역학적 고찰. 이소퀴놀린과 치환된 브롬화밴 질류(p-CH3, p-H, p-NO2)의 반응에 대한 Arrhenius plot(Fig. 2) 로 부터 구한 활성화 에너지(Ea)와 열역 학적 확성화파라미터들(ΔH^{+} , ΔS^{+} 및 ΔG^{+})을 Table 3에 종합하였다. 특히 전자주게 치환체(p- CH_3)인 기질의 경우 $[-\Delta S^{*}]$ 값이 상대적으로 크게 나타나고 있으며, 압력증가에 따라 ΔH⁺ 값과 ΔG⁺ 값은 감소하고 $|-\Delta S^{\dagger}|$ 값은 증가하였다. 이것은 ΔG⁺ 값이 ΔH⁺ 값에 영향을 받고 있는 것으로, 이 러한 경향성은 여러 연구자들¹⁸에 의해 앤탈피 조절 반응임을 입증하여 주고 있다. 또한 Leffler^{19~21} 등 의 연구자들이 제안한 등속은도와 실험은도의 설명 에서(9) 식과 같은 ΔH^{+} 와 ΔS^{+} 의 등속도 관계는 모 두 좋은 직선 관계에 있으며(Fig. 3), Fig. 3에서의 직선의 기울기로부터 구한 등속은도(Tion.)는 다음과 같다.

Table 3. Activation thermodynamic parameter for the reaction of para-substituted benzylbromides with isoquinoline in acetonitrile at 20, 25 and 30 °C under various pressures

	Temp (°C)	ΔH ⁺ °			- ΔS ^{+b}			ΔG ^{+c}				Ea ^d					
		1 bar			1000	1 bar	200	500	1000	1 bar	200	500	1000	I bar	200	500	1000
	20	28.4	24.8	22.6	18.1	207	218	224	239	89.1	88.7	88.4	88.0				
p-CH ₃	25	28.3	24.7	22.6	18.1	206	217	223	237	89.6	89.4	89.0	88.8	30.8	27.2	25.1	20.5
	30	28.3	<u>24,7</u>	22.5	18.0	208	219	225	239	91.2	90.9	90.6	90.4				
	20	34.0	29.5	22.6	18.2	191	204	226	243	89.9	89.4	89.0	88.7				
р-Н	25	33.9	29.4	22.6	18.1	191	204	226	243	90.8	90.4	90.0	89.7	36.4	31.9	25.1	20.6
	30	33.9	29.4	22.5	18.1	191	205	227	243	91.8	91.4	91.3	90.9				
	20	37.9	29.9	25.0	18.2	181	206	220	242	90.2	90.2	89.7	89.1				
p-NO ₂	25	37.9 37.8	29.9	25.0	18.2	181	205	220	242	91.7	91.1	90.7	90.2	40.3	32.4	27.5	20.6
	30	37.8	29.9	24.9	18.2	181	206	221	242	92.6	92.2	91.8	91.4				_

 $^{5}\Delta H^{+}$: kJ · mol⁻¹, $^{5}\Delta S^{+}$: J · mol⁻¹ · K⁻¹, $^{5}\Delta G^{+}$: kJ · mol⁻¹, ^{6}Ea : kJ · mol⁻¹

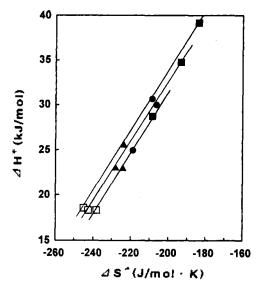


Fig. 3. Isokinetic relations for the reaction of isoquinoline with para-substituted benzoylbromides in accetonitrile at 25 °C. (■: 1 bar ◆: 200 bar ★: 500 bar ⊕: 1000 bar)

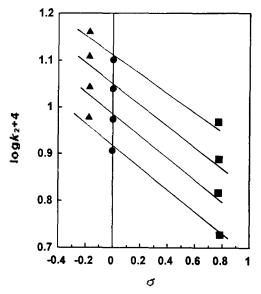


Fig. 4. Hammett plots for the reaction of isoquinoline with para-substituted benzylbromide in actonitrile under various pressures. (♣: p-NO₂ ◆: p-H ★: p-CH₃)

$$\delta\Delta$$
H* = T_{iso} $\delta\Delta$ S* (9)
 p -CH₃ : T_{iso} = 366.15 K
 p -H : T_{iso} = 351.15 K
 p -NO₂ : T_{iso} = 316.15 K

Table 4. Pressure effect on ρ-value for the reaction of para-substituted benzylbromides with isoquinoline in acetonitrile at 25 °C

Temp (°C)	Pressure (bar)								
25	1	200	500	1000					
ρ*	- 0.261	- 0.221	- 0.216	- 0.182					

^a Hammett reaction constant.

여기서 등속은도가 실험은도보다 작으면 엔트로 피 조절반응이고, 크면 엔탈피 조절반응인데, 본 실험의 결과 등속은도가 실험 온도의 각각 293.15, 298.15, 303.15 K 보다 크므로 반응속도는 ΔH[±]에 의한 엔탈피 조절반응임을 알 수 있다.

Hammett 반응식과 압력 효과

$$\log k/k_0 = \rho \sigma \quad \text{E} \vdash \quad \log k/k_0 = \rho \sigma \tag{10}$$

Table 1의 속도상수(k2) 로부터(10) 식을 이용하여 25°C에서의 기질의 치환체(Y)에 대한 Hammett ρ값 올 압력 변화에 따라 계산하여 Table 4에 나타내었 다. 기질에 대한 반응 상수 p는 결합형성에 따른 p 값(p>0)과 결합파괴에 따른 p값(p<0)으로 나누어 생각할 수 있으며²²⁻²⁴ 치환체의 변화에 대한 반응의 감도로 전하이동능력의 크기를 나타낸다. 따라서 양 의 ρ값일 경우 전이상태 반응중심에 음의 하전이 진 전되어 결합 형성이 우세함을 뜻하고, 음의 ρ 값일 경우 반응중심에 양의 하전이 진전됨을 뜻한다. Table 4에서 압력이 증가하는 경우에 반응속도는 증 가하고, |-ΔV*|는 감소한다. Hammett o값은 모두 음의 값을 나타내고, 압력증가에 따라 Iol 값은 감소 하고 있으며, 이는 전체적으로 반응중심에 양의 전 하가 진전되는 메카니즘을 의미하며, 압력증가에 따 라 dissociative S_N2 전이상태 구조의 성격이 다소 약 화됨을 의미한다.

본 논문은 1997학년도 한양대학교의 교내 학술지 원연구비에 의하여 연구되었습니다.

인 용 문 헌

- Bridgman P. W. The Physics of High Pressure Bell London, 1952.
- K. Weale, Chemical Reactions at High Pressures Spon, London, 1967.
- 3. Whalley, E. Adv. Phy. Org. Chem. 1964, 2, 93.

- Kohnstam, G. Prog. Reaction Kinetics 1970, 5, 335.
- 5. Eckert, C. Rep. Prog. Phys. Chem. 1972, 23, 239.
- 6. Jenner, G. Angew. Chem. Int. Ed. 1975, 14, 137.
- 7. Asano T.; LeNoble, W. J. Chem. Rev. 1978, 407.
- 8. Moelyn-Hughes, Kinetics in Solutions 1947; p 338.
- 9. Hyne, J. B. J. Am. Chem. Soc. 1966, 88, 2104.
- Evans, M. G.; Polanyi M. Trans. Faraday Soc. 1935, 31, 875.
- Kondo, Y.; Tojima, H.; Tokura N. Bull. Chem. Soc. Japan. 1972, 45, 3579.
- 12. Menschutkin, N. Z. Phys. Chem. 1980, 5, 589.
- 13. Guggenheim, E. A. Phil. Mag. 1926, 2, 538.
- Whalley, E. Advances in Physical Organic Chemistry, 2nd Ed.; Academic Press: N. Y., 1964; p 93.
- 15. Harned, H. S.; Owen, B. B. Physical Chemistry of

- Electrolytic Solution, 3rd Ed.; Reinhold: New York, 1958; p 369.
- Isaacs, N. S. Physical Organic Chemystry, 1st Ed.;
 John Wiley and Sons: New York, 1987; p 379.
- 17. Keville, D. N. Chem. Comm. 1981, 421.
- Archer, B. L.; Hudson, R. F. J. Chem. Soc. 1950, 3258.
- Leffler, J. E.; Grunwald, E. Rate and Equilibria of Org. Reaction; John Wiley and Sons: N. Y., 1963; p 327.
- 20. Leffler, J. E. J. Org. Chem. 1955, 20, 1202.
- 21. Leffler, J. E. J. Org. Chem. 1966, 31, 533.
- 22. Rogne, O. J. Chem. Soc.(B) 1969, 1294.
- 23. Jaffe, H. H. Chem. Revs. 1953, 53, 191.
- Lee, I.; Kim, N. I.; Sohn, S. C. Tetrahedron Lett. 1983, 23, 4723.