DOI QR코드

DOI QR Code

Photoisomerization of Symmetric Carbocyanines

  • Published : 1998.07.20

Abstract

The phoisomerization process of symmetric carbocyanine dyes such as 3,3'-diethyloxadicarbocyanine iodide (DODCI), 3,3'-diethylthiadicarbocyanine iodide (DfDCI), 1,1'-diethyl-2,2'-dicarbocyanine iodide (DDI), 1,1'-diethyl-2,2'-carbocyanine iodide (DCI), and cryptocyanine (1,1'-diethyl-4,4'-carbocyanine) iodide (CCI) have been studied by measuring the steady state and time resolved fluorescence spectra and the ground-state recovery profiles. The steady-state fluorescence spectrum of photoisomer as a function of concentration and excitation wavelength provides the evidence that the fluorescence of photoisomer is formed by the radiative energy transfer from the normal form and the quantum yield for the formation of photoisomer is increased by decreasing the excitation wavelength. The fluorescence decay profiles have been measured by using the time correlated single photon counting (TCSPC) technique, showing a strong dependence on the concentration and the detection wavelength, which is due to the formation of excited photoisomers produced either by the radiative energy transfer from the non-nal form or by absorbing the 590 nm laser pulse. We first report the fluorescence decay time of photoisomers for these cyanine dyes. The experimental results are explained by introducing the semiempirical calculations. The ground state recovery profiles of DTDCI, DDI, and CCI normal forms have been measured, showing that the recovery time from the singlet excited state is similar with the fluorescence decay time.

Keywords

References

  1. The Theory of Photographic process(4th ed.) Strumer, D. M.;Haseltine, D. W.;James, T. H.(ed.)
  2. Synthesis and Properties of Cyanine and Related Dyes. Special Topics in Heterocyclic Chemistry Strumer, D. M.;Weissberger A.(ed.);Taylor, E. C.(ed.)
  3. The photosynthetic bacteria Feher, G.;Okamura, M. Y.;Clayton, R. K.(ed.);Sistrom, W. F.(ed.)
  4. J. Phys. Chem. v.89 Grieser, F.;Lay, M.;Thistlethwaite, P. J.
  5. J. Chim. Phys. v.76 Mialocq, J. C.;Goujon, P.;Arvis, M.
  6. J. Am. Chem. Soc. v.112 Chatterjee, S.;Davis, P. D.;Gottschalk, P.;Kurz, M. E.;Sauerwein, B.;Yang, X.;Schuster, G. B.
  7. J. Chem. Soc. Faraday Ⅱ v.68 Dempster, D. N.;Morrow, T.;Rankin, R.;Thompson, G. F.
  8. Chem. Phys. Lett. v.22 Arthurs, E. G.;Bradley, D. J.;Roddie, A. G.
  9. Chem. Phys. Lett. v.43 Rulliere, C.
  10. J. Photochem. v.6 Chibisov, A. K.
  11. Chem. Phys. Lett. v.150 Baumler, W.;Penzkofer
  12. Chem. Phys. v.142 Baumler, W.;Penzkofer, A.
  13. Chem. Phys. Lett. v.140 Scaffardi, L.;Bilmes, G. M.;Schinca, D.;Tocho, J. O.
  14. Chem. Phys. Lett. v.134 Bilmes, G. M.;Tocho, J. O.;Braslavsky, S. E.
  15. J. Phy. Chem. v.92 Bilmes, G. M.;Tocho, J. O.;Braslavsky, S. E.
  16. J. Phys. Chem. v.96 Duchowicz, R.;Scaffardi, L.;Di Paolo, R. E.;Tocho, J. O.
  17. J. Phy. Chem. v.93 Bilmes, G. M.;Tocho, J. O.;Braslavsky, S. E.
  18. J. Phys. Chem. v.99 Di Paolo, R. E.;Scaffardi, L. B.;Duchwicz, R.;Bilmes
  19. J. Phys. Chem. v.98 Churio, M. S.;Angermund, K. P.;Braslavsky, S. E.
  20. J. Phys. Chem. v.85 Waldeck, D. H.;Fleming, G. R.
  21. J. Chem. Phys. v.78 Velsko, S. P.;Waldeck, D. H.;Fleming, G. R.
  22. Chem. Phys. v.65 Velsko, S. P.;Fleming, G. R.
  23. J. Phys. Chem. v.99 Levitus, M.;Negri, R. M.;Aramendia, P. F.
  24. J. Phys. Chem. v.98 Aramendia, P. F.;Negri, R. M.;Roman, E. S.
  25. IEEE J. Quantum Electronics v.QE-17 Sibbett, W.;Taylor, J. R.;Welford, D.
  26. Chem. Phys. v.43 Tredwell, C. J.;Keary, C. M.
  27. J. Chem. Phys. v.83 Sundstrom, V.;Gillbro, T.
  28. Chem. Phys. Lett. v.162 Bagchi, B.;Aberg, U.;Sundstom, V.
  29. Chem. Phys. Lett. v.185 Aberg, U.;Sundstom, V.
  30. Chem. Phys. Lett. v.215 Aberg, U.;Akesson, E.;Sundstom, V.
  31. J. Phys. Chem. v.101 Rodiguez, J.;Scherlis, D.;Estrin, D.;Aramendia, P. F.;Negri, M.
  32. J. Phys. Chem. v.98 Awad, M. M.;McCarthy, P. K.;Blanchard, G. J.
  33. Bull, Korean Chem. Soc. v.15 Park, J.;Kim, D.
  34. Laser Dyes Maeda, M.