Abstract
The phodissociation dynamics of t-butyl hydroperoxide at 280-285 nm has been investigated by measuring laser induced fluorescence spectra of the fragment OH. Measured fractions of the available energy distributed among the fragments are ft=0.56, fr(OH)=0.044, fint(t-BuO)=0.40, and negligible populations of OH are found in vibrationally excited states. By analyzing the Doppler profiles of the spectra of OH, the positive ν-J vector correlation has been obtained. From the measured ν-J correlation and A" propensity in the two Λ-doublets of OH, it is concluded that the dissociation takes place directly from the repulsive surface induced by the σ* ← n transition with the fragment OH rotating in the plane perpendicular to the dissociating O-O bond axis.