Abstract
A solvent sublation was studied for the determination of trace Cd, Co, Cu and Ni in water samples. Ammonium pyrrolidine dithiocarbamate (APDC) was used as a complexing agent. Experimental conditions such as pH of solution, amounts of APDC, the type and amount of surfactant, the type of solvent, etc. were optimized for the effective sublation of analytes. After metal-PDC complexes were formed in sample solutions of pH 2.5, the precipitate-type complexes were floated in a flotation cell with an aid of sodium lauryl sulfate as a surfactant and by bubbling with nitrogen gas. The precipitates were dissolved and separated into the surface layer of methyl iso-butyl ketone (MIBK). The analytes preconcentrated were determined by a graphite furnace atomic absorption spectrophotometry (GF-AAS). Extractability of each element was 88% for Cd(Ⅱ), 86% for Co(Ⅱ), 95% for Cu(Ⅱ) and 76% for Ni(Ⅱ), respectively. And this procedure was applied to the analysis of real samples. From the recoveries of more than 92%, it was concluded that this method could be simple and applicable for the determination of trace elements in various water samples of a large volume.