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Figure 2. "C(GD)NMR Signals C1 at C2 of the sterevisomeric
ozonides 4a-1 and 4a-I1.

spectra of the previously obtained mixtures of the stereo-
isomeric ozonides 4a, 4b and 4¢, as summarized in Table 1.
In particular, the *C NMR specirum of 4a-l exhibited a
quartet for the signal of C(2) due to coupling with the CH;
group, whereas the spectrum of the other isomer exhibited a
quartet of a doublet due to long range coupling with the
proton at C(1) (Figure 2). This prompted us to assign their
stereochemical identities, although the isomers were not
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separated. These assignments derive support from the fact,
that the Z-isomer I exhibited the '"H NMR signal for the CH
group in the ozonide ring upfield from that of the
corresponding E-isomer 1.
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Recently, we have reported a new synthesis of 4-benzoyl-
3-trifluoromethyl-5-p-toluenesulfonyloxypyrazoles  exhibiting
herbicidal activities involving [1,3] rearrangement of benzoyl
group in S5-benzoyloxy-4-bromo-3-trifluromethylpyrazoles
vin lithium-bromine exchange reaction using tert-butyl-
lithium." In connection with this study, we wish to report the
electrophilic substitution reaction and a new type of sulfonyl
group rearrangement of the 4-lithio-5-p-toluenesulfonyloxy-
pyrazoles.

It has been known that ortho-lithio-p-toluenesulfonyloxy-
benzene is unstable even at very low temperature leading to
benzyne intermediate which results in the multimerized by-
products.” However, the benzyne equivalents in the five
membered aromatic heterocycles have not been known in
the literature, and we assumed that 4-lithio-5-p-toluene-
sulfonyloxypyrazoles would be relatively stable and useful
for the preparation of new pyrazole derivatives.

4-Bromo-5-p-toluenesulfonyloxypyrazoles were prepared
by bromination of 5-p-toluenesulfonvloxypyrazoles or by
tosylation of 4-bromo-5-hydroxypyrazoles.” d4-Lithio-5-p-

toluenesulfonyloxypyrazoles as intermediates were prepared
by lithium-bromine exchange reaction of d4-bromo-5-p-
toluenesuifonyloxypyrazoles with fers-butyllithium in THF at
=78 °C.
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Scheme 1. Use of 4-Litho-5-p-toluenesulfonyloxypyrazole
Derivatives.
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Table 1, Electrophilic substitution Reaction of 4-Bromo-5-p-
toluenesulfonyloxypyrazoles via Lithium-bromine Exchange
Using tert-Butyllithium
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Table 2. Fries Rearrangement of Sulfony! Group of 4-Bromo-5-
p-toluenesulfonyloxy pyrazoles to 5-Hydroxy-4-p-ioluenesulfonyl-
pyrazoles via Li-Br Exchange Reaction

Entry Substrate Electrophile Product  Yield (%) Entry Substrate Salvent Product  Yield (%)
e 1 1a THF 5a 32
1 1 2 81
2 Y 2 2 1b THF 5b 45
0 3 1b ether Sb 35
2 La c1”SE)-OMe 2b 79 4 1b  THE/HMPA  5b 40
3 la ™ o 2 78 *isolated yields.
" R, Ts Fors, a:R;=-CH; b:R,=-Ph
0 Me =. R, =-CH
4 la A Me 2d 85 N)_X\ R, =-CF; 2 3
A OH ‘R, =-
5 1la Q Qe 2 7 y G
cg’\©OMe € Ry R, = -CH;,
5
6 la i@ 2f o1
H temperature, the sulfonyl group was rearranged at 4-position
7 1a 9\ 2g 05 to afford 5-hydroxy-4-p-toluenesulfonylpyrazoles Sa-.c. We
Cl” "OMe attempted this rearrangement in various solvents in order to
o) improve the yields, but unsatisfactory results were obtained
8 1b CI)\Q 3a 88 as shown in Table 2. However, this rearrangement appeared
I to be novel and useful method for the synthesis of 5-
9 1b 2@_ 3¢ 82 hydroxypyrazoles substituted with sulfone group at 4-posi-
Cl cl tion.
10 1b 0O 3 ]7 In conclusion, 4-lithio-5-p-toluenesulfonyloxypyrazoles as
HJ\Q intermediates were stable, enough to undergo the electro-
" le o Cl & - philic substitution reaction to form 4-substituted-5-p-toluene-
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The electrophilic substitution of the intermediates with
benzoyl chlorides gave the corresponding 4-benzoyl-5-p-
toluenesulfonyloxypyrazoles in good yields. This method
should offer an efficient preparation of various 4-benzoyl-5-
p-toluenesulfonyloxypyrazoles including pyrazolate, a
commercialized herbicide.* The reaction of other electro-
philes such as benzaldehyde or methyl chioroformate with 4-
lithio-5-p-toluenesulfonyloxy- pyrazoles also afforded a new
type of 4-substituted pyrazole derivatives as shown in Table
1.5

We examined a new Fries-type rearrangement of sulfonyl
group of 4-lithio-5-p-toluenesulfonyloxypyrazoles in order to
obtain 5-hydroxy-4-p-toluenesuifonylpyrazoles. Sulfonyl
Fries-type rearrangements were usually performed in the
presence of Lewis acid and not mediated by carbanions,®
because of the unstability of ortho-lithiotoluenesulfonyloxy-
benzene When 4-lithio-5-p-toluenesutfonyloxypyrazoles
formed at —78 °C in THF and warmed up to room

sulfonyloxypyrazoles and also the sulfonyl group rearranged
to the 4-position giving the 5-hydroxy-4-p-toluenesulfonyl-
pyrazoles under mild conditions.
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5. The 'H NMR data of the key intermediates and products
are as follows; 1a: (200 MHz, CDCl,) & 7.86 (2H, d, J=8
Hz, Ar), 7.43 (2H, d, J=8 Hz, Ar), 3.87 (3H, s, N-CH,),
2.50 (3H, s, -CH,). 1b: (60 MHz, CDCl;) § 7.55 (2H, d,
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(3H, s, -CH,). 2d: (200 MHz, CDCl,) § 7.39-6.98 (7H, m,
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Ar), 3.69 (3H, s, N-CHy), 2.35 (3H, s, -CH,), 2.32 (3H, s,
-CH;,), 2.29 (3H, s, -CH,). 2e: (200 MHz, CDCl,) & 7.48-
7.12 (3H, m, Ar), 3.84 (3H, s, O-CH,), 3.82 (3H, s, O-
CH,), 3.63 (3H, s, N-CHy), 2.35 (3H, s, -CH,). 2f: (200
MHz, CDCL) & 7.70 (2H, d, J=8.5 Hz, Ar), 7.35 (2H, d,
J=8.5 Hz, Ar), 7.29-7.26 (SH, m, Ar), 5.81 (1H, s, CH),
3.64 (3H, s, N-CH,), 2.47 (3H, s, -CHs). 2g: (60 MHz,
CDCL,) 3 7.92 (2H, d, J=8 Hz, Ar), 7.49 (2H, d, J=8 Hz,
Ar), 3.85 (3H, s, O-CH,), 3.55 (3H, s, N-CH,), 2.48 (3H,
s, -CH,). 3g: (200 MHz, CDCL) § 7.51-6.93 (14H, m,
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Ar), 6,05 (1H, s, CH), 2.31 (3H, s, -CH,), 1.96 (3H, s,
-CH.). $a: (200 MHz, MeOH-d,) & 7.78 (2H, d, J=7 Hz,
Ar), 7.24 (2H, d, J=7 Hz, Ar), 3.31 (3H, s, N-CH,), 2.37
(3H, s, -CH;). 5b: (200 MHz, MeOH-d,) & 7.78-7.02 (9H,
m, Ar), 2.27 (3H, s, -CH,), 2.15 (3H, s, Ph-CH,). Sc: (200
MHz, MeOH-d,) & 7.80 (2H, d, J=8 Hz, Ar), 7.37 (2H, d,
J=8 Hz, Ar), 347 (3H, s, N-CH,), 2.48 (3H, s, -CH,),
2.16 (3H, s, -CH,).
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