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OPERATORS ON GENERALIZED BLOCH SPACE

K1 SEoNG CHOI AND GYE TAK YANG

ABSTRACT. In [5], Zhu introduces a bounded operator T from L°(D) into Bloch
space B. In this paper, we will consider the generalized Bloch spaces B, and find
bounded operator from L% (D) into By.

1. Introduction

Let C be the complex number plane and D = {z € C | |z| < 1} be the open unit
disk in C. Let dA(z) be the area measure on D normalized so that the area is 1.
For 1 < p < o0, LP(D,dA) will denote the Banach space of Lebesgue measurable
functions f on D with

[ /D F()PAAR)]S < co.

L*°(D,dA) will denote the Banach space of Lebesgue measurable functions f on D
with

esssup{|f(z)| : z € D} < oo.
The Bloch space of D, denoted by B, consists of analytic functions f on D such
that sup{(1 — |2|?)|f (z)| : z € D} < co. The set B of Bloch functions (modulo

constant functions) become a Banach space ([1],p.13 ). In [5], Zhu show that the
integral operator T which is represented by

716) = [ iAW)

is a bounded operator from L% (D) into B.
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For each ¢ > 0, the space B, consist of analytic functions f on D with the

property that
sup{(1 — |2|*)%|f (2)| : z € D} < o0.

For each g > 0, let T, denote the operator defined by

Tef(2) = q/D at%dA(w)’ z€D.

In this paper, we will show that generalized Bloch spaces B, are Banach spaces.
Also we will investigate some properties of T,. In particular, we will show that Ty

is a bounded operator from L*°(D) into B,.

2. B, is a Banach space

Let us define a norm on B as follows;
I £ 1ly = 1£(0)] +sup{(1 — |2]*)?|f'(2)| | z € D}.
Lemma 1. If fe€ B, g >0, then

1f(2)] < 1FO+ I £ llg (1= 127)7

Proof. .
lﬂn—fwns/‘m@awut
0

LI - )
SL a-fpe @

1
1
<I'r ||q/0 U_—det

1
<Il flq SEDL

since the first inequality follows from the followings

f(z) = f(0) = /0 f'(tz)zdt.

Thus the desired result follows. a
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Theorem 1. For each ¢ > 0, B, is a Banach space with norm ||,
Proof. Let (f,) be a Cauchy sequence in B;. By Lemma 1,
2y~
[(frn = fm)(2) = (fn = fm)(O)] < || fru = Fim Mg (1 — |2]7) 77

It follows that the sequence (f,) is a Cauchy sequence in the topology of uniform
convergence on compact sets. Thus there exists holomorphic function f: D — C
such that f, — f uniformly on compact subsets of D as n — oo.

Since f, — f uniformly on compact subsets of D as n — oo, it follows that

f1(2) — f'(z) uniformly on compact subsets of D as n — oo.
Thus, for each n

(L= 12)U(fa = F) () = A= 2)U(fn = ) ()] as m— o0
for each z € D . Therefore, for each sufficiently large n,
(1= 12%(fa - ()] <«
Narmely, || fo— f [, <. 0

3. Operator T, on L*(D)

In the sequal, Cy(D) is the space of complex -valued continuous functions on D
which vanish on the boundary.

Theorem 2. If P is a polynomial, then there exists f in Co(D) such that P = T4 f.

Proof. It suffices to show that T,g(z) = 2™ for some g € Co(D). In fact, if we
consider the function g(z) = (1 — |z|?)?z™, then

_ 2 n
To) = [ %M(w)

B nemT(k+1+q),
~Q/D(1—|’w|2)w 2 O—Erfﬁ:_)(zw)de(w)

— x[(k+1+q) [* .

Sk )2pntktl gi(n—k)o
e / (1- =00 grdg
nr(n+1+Q) 212, 2n+1

nIT(1 + q) /0(1_’°)T dr
_ D(n+1+gq) 1 n

nlI'(1+4q) (n+1)(n+2)(n+ 3)2
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In third equality, if n # k, fo% fol(l —p2)2pnthtlei(n—k)04rdh = 0. Thus the desired
result follows. O

Theorem 3. For each q > 0, the operator T, maps each function of the form z"z™

to a monomial where n and m are positive integers such that n > m.

Proof.

= / Z KT+ W dA(w)

I‘(k+1+q)

— k n—m+de
12 KT +q) /Dw v @)

'n-m+1+q) . . ne—n
(n—m)T(1 +q) /D“’ whdA(w)
'n-—-m+1+gq) 1 ,
(n—m)T(1+¢q) (n+1)(n+2)(n+3)

Il
)

n—m

q

Where, the fourth equality follows from the proof of Theorem 2. [

Lemma 2[13, p. 17]. For s > —1 andt € R, let

I (2) = /D—(—Hw—lz)sdA(w), 2z€D

11— zm[2+s+t

then we have
(1)I54(2) is bounded in z ift <O ;
(2) I +(2) ~ —=log(1 — |2]) as |2| = 17 ift =0
(3) Isi(z) ~(1—|z]*)"tas|z| - 17 ift >0 ;

Theorem 4. For each q > 0, the operator T, maps L*°(D) boundedly into By.

proof. For every g in L*°(D)

Ta(:) =g [ (—f’(f”}—dA(w)-

p (1 — zw)lte

wg(w)
1 — zw)?+e

& (Ty9(2) = ala +1) / dA(w).
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By Lemma 2,

TN < ala+ Dlalle [ T

< Cllglloo(1 — |2*)7¢
for some constant C > (. Since

IT,9(0)] < gl /D 9(w)dAwW)| < g1 9 lloo

we obtain the following desired result

[1T491lq < (C + 9)ll9lloo- O
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