J. Korea Soc. Math. Ed. Ser. B: Pure Appl. Math. 5(1998), no. 1, 13-16

A NOTE ON MINIMAL SETS OF THE CIRCLE MAPS

SEUNG KAB YANG¹, KYUNG JIN MIN² AND SEONG HOON CHO³

ABSTRACT. For continuous maps f of the circle to itself, we show that (1) every ω -limit point is recurrent (or almost periodic) if and only if every ω -limit set is minimal, (2) every ω -limit set is almost periodic, then every ω -limit set contains only one minimal set.

1. Introduction

Let I be the unit interval, S^1 the circle and X a topological space. And let $C^0(X,X)$ denote the set of continuous maps from X into itself.

Let $f \in C^0(X, X)$. For any positive integer n, we define f^n inductively by $f^1 = f$ and $f^{n+1} = f \circ f^n$. Let f^0 denote the identity map of X.

For any $f \in C^0(X, X)$, let $P(f), AP(f), R(f), \Lambda(f)$ and $\Omega(f)$ denote the collection of the periodic points, almost periodic points, recurrent points, ω -limit points and nonwandering points of f, respectively.

 $Y \subset X$ is called an invariant subset of f if $f(Y) \subset Y$; and strongly invariant if f(Y) = Y. Suppose $Y \subset X$ is non-void, closed, and invariant relative to f. If Y has no peoper subset which is non-void and invariant relative to f then Y is said to be a minimal set of f.

In 1986, J.C.Xiong [5] proved that for any interval map f, every ω -limit point is recurrent (or almost periodic) if and only if every ω -limit set is minimal. We have the same result for map of the circle.

Received by the editors Nov. 13, 1997 and, in revised form Feb. 10, 1998.

¹⁹⁹¹ Mathematics Subject Classifications. Primary 58F99.

Key words and phrases. Recurrent set, almost periodic set, ω -limit set, minimal set.

¹The first author was supported by Nat. Sci. Res. Ins., MyongJi Univ.

Theorem 5. Let $f \in C^0(S^1, S^1)$. Then the followings are equivalent.

- (1) $\Lambda(f) = AP(f)$.
- (2) $\Lambda(f) = R(f)$.
- (3) For every $x \in S^1$, the ω -limit set $\omega(x, f)$ of x is minimal.

In 1966, A.N.Sarkovskii [3] showed that for any interval map f, the following conditions (i) and (ii) are equivalent.

- (i) The periods of all periodic points of f are powers of 2.
- (ii) For every $x \in I$ either the ω -limit set $\omega(x)$ of x is a periodic orbit of f or the set $\omega(x)$ contains no periodic orbit of f.
 - In [5], J.C.Xiong showed that the condition (i) is equivalent to the following condition (iii).
- (iii) For every point $x \in I$, the ω -limit set $\omega(x, f)$ of x contains only one minimal set. In this paper, we will prove the following theorem.

Theorem 8. Let $f \in C^0(S^1, S^1)$. Suppose that $\Lambda(f) = AP(f)$. Then we have that for any $x \in S^1$, the ω -limit set $\omega(x, f)$ of x contains only one minimal set.

2. Preliminaries and definitions

Let (X,d) be a metric space and $f \in C^0(X,X)$. The forward orbit O(x) of $x \in X$ is the set $\{f^k(x) \mid k=1,2,\cdots\}$.

A point $x \in X$ is called a *periodic point* of f if for some positive integer n, $f^n(x) = x$. The period of x is the least such integer n. We denote the set of periodic points of f by P(f).

A point $x \in X$ is called a recurrent point of f if there exists a sequence $\{n_i\}$ of positive integers with $n_i \to \infty$ such that $f^{n_i}(x) \to x$. We denote the set of recurrent points of f by R(f).

A point $x \in X$ is called a nonwandering point of f if for every neighborhood U of x, there exists a positive integer m such that $f^m(U) \cap U \neq \phi$. We denote the set of nonwandering points of f by $\Omega(f)$.

A point $x \in X$ is called a almost periodic point of f if for any $\epsilon > 0$ one can find an integer N > 0 with the following property that for any integer q > 0 there exists an integer r, $q \le r < q + N$, such that $d(f^r(x), x) < \epsilon$, where d is the metric of X. We denote the set of almost periodic points of f by AP(f).

A point $y \in X$ is called an ω -limit point of x if there exists a sequence $\{n_i\}$ of positive integers with $n_i \to \infty$ such that $f^{n_i}(x) \to y$. We denote the set of ω -limit points of x by $\omega(x, f)$. Define $\Lambda(f) = \bigcup_{x \in X} \omega(x, f)$.

3. Main Results

Lemma 1[4]. Let $f \in C^0(S^1, S^1)$. Then we have that $x \in AP(f)$ if and only if $x \in \omega(x, f)$ and $\omega(x, f)$ is minimal.

The following lemma follows from [1].

Lemma 2. Let $f \in C^0(S^1, S^1)$. Then we have

$$P(f) \subset AP(f) \subset R(f) \subset \overline{R(f)} \subset \Lambda(f) \subset \Omega(f)$$
.

The following lemma found in [2]

Lemma 3. Let $f \in C^0(S^1, S^1)$ and let P(f) be empty. Then we have $\Omega(f) = R(f)$.

Corollary 4. Let $f \in C^0(S^1, S^1)$ with $P(f) \neq \phi$. Then the followings are equivalent.

- $(1) \ \overline{R(f)} = P(f).$
- (2) $\Omega(f) = P(f)$.
- (3) $\Lambda(f) = P(f)$.

Theorem 5. Let $f \in C^0(S^1, S^1)$. Then the following conditions are equivalent.

- (1) $\Lambda(f) = AP(f)$.
- (2) $\Lambda(f) = R(f)$.
- (3) For every $x \in S^1$, the ω -limit set $\omega(x, f)$ of x is minimal.

Proof. $(1) \Rightarrow (2)$: Obvious by Lemma 2.

 $(2)\Rightarrow (3):$ Let x be arbitrary point in S^1 , and let y be any point in $\omega(x,f)$. Then there exists a sequence $n_i\to\infty$ such that $f^{n_i}(x)\to y$. Suppose that $z\in\omega(y,f)$. Then there exists a sequence $m_i\to\infty$ such that $f^{m_i}(y)\to z$. Therefore $f^{m_i+n_i}(x)\to z$, and hence $z\in\omega(x,f)$. Thus $\omega(y,f)\subset\omega(x,f)$. Now we show that $\omega(x,f)\subset\omega(y,f)$. Since y is arbitrary point in $\omega(x,f)$, it suffices to show that $y\in\omega(y,f)$. We know that $y\in\Lambda(f)$ by definition. By assumption, $y\in R(f)$, and hence $y\in\omega(y,f)$. Therefore $\omega(x,f)$ is minimal for any $x\in S^1$.

 $(3)\Rightarrow (1)$: Suppose that $\omega(x,f)$ is minimal for any $x\in S^1$. Let $y\in \Lambda(f)\backslash AP(f)$. Then there exists $z\in S^1$ such that $y\in \omega(z,f)$. Since $\omega(z,f)$ is minimal, $\omega(y,f)=\omega(z,f)$. Hence $y\in \omega(y,f)$ and $\omega(y,f)$ is minimal, and hence $y\in AP(f)$ by Lemma 1. This is a contradiction.

Corollary 6. Let $f \in C^0(S^1, S^1)$. Suppose that P(f) is closed. Then the followings are equivalent.

- (1) R(f) = AP(f).
- (2) $\Omega(f) = AP(f)$.
- (3) $\Lambda(f) = AP(f)$.
- (4) $\Lambda(f) = R(f)$.
- (5) For every $x \in S^1$, the ω -limit set $\omega(x, f)$ of x is minimal.

Corollary 7. Let $f \in C^0(S^1, S^1)$. Suppose that for any $x \in S^1$, the ω -limit set $\omega(x, f)$ of x contains a minimal set containing x. Then we have $\Lambda(f) = AP(f)$.

Theorem 8. Let $f \in C^0(S^1, S^1)$. Suppose that $\Lambda(f) = AP(f)$. Then we have that for any $x \in S^1$, the ω -limit set $\omega(x, f)$ of x contains only one minimal set.

Proof. Suppose that $\Lambda(f) = AP(f)$. Let $x \in S^1$. Assume that there exist two minimal sets M, N with $M \subset \omega(x, f)$ and $N \subset \omega(x, f)$. Then for every $a \in M$ and $b \in N$, $M = \omega(a, f)$ and $N = \omega(b, f)$. We know that the ω -limit set $\omega(x, f)$ of x is minimal by Theorem 5. Since $a, b \in \omega(x, f)$,

$$M = \omega(a, f) = \omega(x, f) = \omega(b, f) = N.$$

REFERENCES

- 1. J. S. Bae, S. H. Cho and S. K. Yang, Relations between nonwandering points and turning points on the circle, Bull. Korean Math. Soc. 32 (1995), 57 66.
- J. S. Bae, S. H. Cho, K. J. Min and S. K. Yang, Nonwandering points of a map on the circle,
 J. Korean Math. Soc. 33 (1996), 1115 1121.
- 3. A. N. Sarkovskii, The behaviour of a map in the neighborhood of an attracting set, Ukrain. Mat. Zh. 18 (1966), 60 83.
- 4. J. C. Xiong, Set of almost periodic pooints of a continuous self-map of an interval, preprint.
- J. C. Xiong, A note on minimal sets of interval maps, IC/86/207, International Centre for Theoretical Physics, 1986.
 - ^{1,2} Department of Mathematics, MyongJi University, Yongin 449-728, Korea.
 - ³ DEPARMENT OF MATHEMATICS, HANSEO UNIVERSITY, CHUNGNAM 356-820, KOREA.