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A NOTE ON MINIMAL SETS OF THE CIRCLE MAPS

SEUNG KAB YANG!, KyunGg JIN MIN? AND SEONG HooN CHO?

ABSTRACT. For continuous maps f of the circle to itself, we show that (1) every
w-limit point is recurrent ( or almost periodic ) if and only if every w-limit set is
minimal, (2) every w-limit set is almost periodic, then every w-limit set contains only
one minimal set.

1. Introduction

Let I be the unit interval, S the circle and X a topological space. And let
C%X, X) denote the set of continuous maps from X into itself.

Let f € C%(X, X). For any positive integer n, we define f™ inductively by f* = f
and f**1 = fo f*. Let f° denote the identity map of X.

For any f € C%(X, X), let P(f), AP(f), R(f), A(f) and Q(f) denote the collec-
tion of the periodic points, almost periodic points, recurrent points, w-limit points
and nonwandering points of f, respectively.

Y C X is called an invariant subset of f if f(Y) C Y; and strongly invariant if
f(Y) =Y. Suppose Y C X is non-void, closed, and invariant relative to f. If YV
has no peoper subset which is non-void and invariant relative to f then Y is said
to be a minimal set of f.

In 1986, J.C.Xiong [5] proved that for any interval map f, every w-limit point is
recurrent ( or almost periodic ) if and only if every w-limit set is minimal. We have

the same result for map of the circle.
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Theorem 5. Let f € C°(SY, S). Then the followings are equivalent.
(1) A(f) = AP(f).
(2) A(f) = R(f).

(3) For every x € S, the w-limit set w(z, f) of x is minimal.

In 1966, A.N.Sarkovskii (3] showed that for any interval map f, the following
conditions (i) and (ii) are equivalent.
(1) The periods of all periodic points of f are powers of 2.
(ii) For every x € I either the w-limit set w(z) of x is a periodic orbit of f or the set
w(z) contains no periodic orbit of f.
In [5], J.C.Xiong showed that the condition (i) is equivalent to the following
condition (iii).
(3ii) For every point = € I, the w-limit set w(z, f) of « contains only one minimal set.
In this paper, we will prove the following theorem.

Theorem 8. Let f € C°(5,S1). Suppose that A(f) = AP(f). Then we have that
for any T € S, the w-limit set w(z, f) of  contains only one minimal set.

2. Preliminaries and definitions

Let (X, d) be a metric space and f € C° X, X). The forward orbit O(zx) of
z € X is the set {f*(z) | k=1,2,--- }.

A point z € X is called a periodic point of f if for some positive integer n,
f™(z) = z. The period of z is the least such integer n. We denote the set of
periodic points of f by P(f).

A point z € X is called a recurrent point of f if there exists a sequence {n;} of
positive integers with n; — oo such that f™i(z) — z. We denote the set of recurrent
points of f by R(f).

A point x € X is called a nonwandering point of f if for every neighborhood U
of z, there exists a positive integer m such that f”(U)NU # ¢. We denote the set
of nonwandering points of f by Q(f).

A point x € X is called a almost periodic point of f if for any € > 0 one can find
an integer N > 0 with the following property that for any integer ¢ > 0 there exists
an integer 7, ¢ < 7 < ¢+ N, such that d(f"(z),z) < €, where d is the metric of X.
We denote the set of almost periodic points of f by AP(f).
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A point y € X is called an w-limit point of z if there exists a sequence {n;} of
positive integers with n; — oo such that f™(z) — y. We denote the set of w-limit

points of z by w(z, f). Define A(f) = | w(z, f)
z€X

3. Main Results

Lemma 1[4]. Let f € C°(S1,S'). Then we have that x € AP(f) if and only if
z € w(z, f) and w(z, f) is minimal.

The following lemma follows from [1].

Lemma 2. Let f € C°(S*, SY). Then we have

P(f) € AP(f) C R(f) C R(f) C A(f) < Q).
The following lemma found in [2]

Lemma 3. Let f € C°(S!, SY) and let P(f) be empty. Then we have Q(f) = R(f).

Corollary 4. Let f € C°(SY, SY) with P(f) # ¢. Then the followings are equiva-
lent.

(1) R(f) = P(f).
(2) f) = P(f)-
(3) A(F) = P(f)-

Theorem 5. Let f € C°(S1,S'). Then the following conditions are equivalent.
(1) A(f) = AP(f).
(2) A(f) = R(f).

(3) For every xz € S, the w-limit set w(z, f) of  is minimal.

Proof. (1) = (2) : Obvious by Lemma 2.

(2) = (3) : Let z be arbitrary point in S, and let y be any point in w(z, f).
Then there exists a sequence n; — oo such that f™(z) — y. Suppose that z €
w(y, f). Then there exists a sequence m; — oo such that f™i(y) — z. Therefore
f™iti(z) — z, and hence z € w(z, f). Thus w(y, f) C w(z, f). Now we show
that w(x, f) C w(y, f). Since y is arbitrary point in w(z, f), it suffices to show that
y € w(y, f). We know that y € A(f) by definition. By assumption, y € R(f), and
hence y € w(y, f). Therefore w(z, f) is minimal for any z € S*.
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(3) = (1) : Suppose that w(z, f) is minimal for any z € S. Let y € A(f)\AP(f).
Then there exists z € S! such that y € w(z, f). Since w(z, ) is minimal, w(y, f) =
w(z, f). Hence y € w(y, f) and w(y, f) is minimal, and hence y € AP(f) by Lemma
1. This is a contradiction.

Corollary 6. Let f € C%(S*,S"). Suppose that P(f) is closed. Then the followings
are equivalent.

(1) R(f) = AP().

(2) Q(f) = AP(f).

(3) A(f) = AP(f).

(4) A(f) = R(f).

(5) For every z € S, the w-limit set w(zx, f) of x is minimal.

Corollary 7. Let f € C°(S,S'). Suppose that for any x € S, the w-limit set
w(z, f) of ¢ contains a minimal set containing . Then we have A(f) = AP(f).

Theorem 8. Let f € C°(S1,S'). Suppose that A(f) = AP(f). Then we have that
for any z € S, the w-limit set w(x, f) of T contains only one minimal set.

Proof. Suppose that A(f) = AP(f). Let z € S'. Assume that there exist two
minimal sets M, N with M C w(z, f) and N C w(z, f). Then for every a € M and
be N, M =w(a, f) and N = w(b, f). We know that the w-limit set w(z, f) of z is

miniral by Theorem 5. Since a,b € w(z, f),

M =uw(a, f) =w(z, ) =w(b, f) = N.
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