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THE HYPERBOLIC METRIC ON K-CONVEX REGIONS

Tal SUNG SONG

ABSTRACT. Mejia and Minda proved that if a hyperbolic simply connected region
Q is k-convex, then {ViegAq (2)| € Aq (2)4/1 — 7\}2:’(0_2)12 € . We show that this
inequality actually characterizes k-convex regions.

1. Introduction

We begin with a short introduction to hyperbolic regions in the complex plane
C. A general discussion of this subject can be found in [1] and [4]. A region
in C is called hyperbolic if the complement of ) with respect to C contains at
least two points. A hyperbolic simply connected region € is said to be k-convex
(k > 0) if |a — b} < 2/k for any pair of distinct points a,b € Q and the intersection
of two closed disks of radii 1/k that have both a and b on their boundaries lies in
). Mejia and Minda [6] proved that if Q is a hyperbolic simply connected region
bounded by a simple closed curve 89 of class C2 and if K. (2,00) > k for all
z € 02, then Q is k-convex. Here K, (z,02) denotes the euclidean curvature of 9
at the point 2. If a region 2 is hyperbolic, then, by the uniformization theorem
[2, p.39], there exists a holomorphic universal covering projection f of the open
unit disk D =.{z: |z| < 1} onto Q. Note that f is a conformal mapping of D
onto 2 when (Q is simply connected. The hyperbolic metric on D, normalized to
have Gaussian curvature -1, is Ap(z)|dz| = 2|dz|/ (1 —|2]?). If f : D — Q is any
holomorphic universal covering projection, then the hyperbolic metric Aq(w)|dw|
on §? is determined from
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The hyperbolic metric is invariant under holomorphic covering projections. In par-
ticular, the hyperbolic metric is a conformal invariant.

The gradient Vg(z) is the complex vector (g%, gg—) and its squared length is

2 2
lVg|2 = gg + )g% . If g is a real-valued differentiable function, then we have
Vgl =2 %;1 , Where gz- is the differential operator

o _1(0 0N ..
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Mejia and Minda [6] proved that if a hyperbolic region Q in C is k-convex, then for
z €0

IV logAa (2)] < Aa (2) /1 - xf%

In this paper we show that this inequality actually characterizes k-convex regions.

2. Euclidean and hyperbolic curvature

Let v: 2z = 2(t), t € [a,b], be a C? curve in the complex plane with 2(t) # 0 for
t € [a,b]. The euclidean curvature K. (z,7) of the curve v at the point z = z(%) is
the rate of change of the angle € that the tangent vector makes with the positive

real axis respect to arc length :

de_dodt 1 2 (t)
KoM= G = 5 ™ o0 )

The value of the euclidean curvature is independent of the parametrization of +.

If f is holomorphic and locally univalent in a neighborhood of 7, then f oy is
also a C? curve with nonvanishing tangent. Let w = f(z) and 0 = f o. Then
w =w(t) = f(2(t)), t € [a,b] is a parametrization of . We have
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o) = 1 " w”(t)
Ke (w,0) = ren] {w’(t)}
-y { T
|7(2)] 12 ()] F(2)2'(¢) -

This yields the formula for the change of the euclidean curvature under f :

Ke (f(2),f o) |f'(2)| = Ke (2,7) + Im { ];<(>) {Z:E& } ' W

Next, we define the hyperbolic curvature. More details, see [3] and [7]. If v is a
C? curve in a hyperbolic region € with nonvanishing tangent, then the hyperbolic
curvature of vy at the point z = z(t) is given by

dlog Aa (2) 2(t) H |

Hala)= 52 70

X(:Tz')‘ [K (z,'y)+21m{

For the unit open disk D we have

1— o

Kp (z’ 7) =

K. (z,7) +Im {z—(thI(t) } .

|2/ (2)]

Let us determine the hyperbolic curvature of the positively oriented circle -y in D
with center 0 and radius 7 € (0,1). A parametrization of vy is z = z(t) = re¥,
0 <t <27 Then

1 {Zm) 1
Ke(=7) = ot {z'@) } "

As 2(t)2/(t)/ |Z'(t)| = ir so that

1-r21 1 1
KD(Z,’Y)= 5 -7:+'f‘:§(7"+;).

Thus, any circle in D with center origin has the hyperbolic curvature strictly larger

than 1. The following result is well known. We include a proof for the convenience.

Lemma 1. Suppose Q) and A are hyperbolic regions and f is a conformal mapping
of Q onto A. Then Kq (2,7) = Ka(f(2), fory) for any C? curve v in Q with
nonvanishing tangent.

Proof. Let w = f(z) and o = fo. From the conformal invariance of the hyperbolic
metric, we obtain Aq (z) = Aa (f(2))|f'(2)|. Then
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log Aq (z) =log Aa (F(2)) + log f2)+ 5 1og 7@

so that
Olog Aq (2) log Aa (w) 1 f"(z)
0z Ow f&)+3 2 f'(2)
From w'(t) = f/(z)#/(t), we obtain |w'(t)| = |f'(2)||2'(¢)| and
EAQ Y ( w(t)
Hence

Ologhq (2) 2'(t) | _ . log Aa (w) w'(t)
2im { ZE R T} <1 { 2B

“m{’}'ff;’ ljggl} '

(2)

From (1) and (2), we obtain

Aa (2) Ka (2,7) — Ke (2,7) = |f ()] D\a (w) Ka (w,0) — K. (w,0))]
+|f ()| Ke (w,0) — Ke (2,7).
This identity yields Kq (z,7) = Ka (w,0) = Ka (f(2), f o 7y) since g (2) = Aa (w)
|F(2)]-

3. A characterization of k-convex regions

A holomorphic univalent function f in D is called k-convex provided f (D) is a
k-convex region. If a region (2 is k-convex, then, by the uniformization theorem,
there exists a k-convex function f such that f (D) = Q. Ma, Minda and Mejia [5]
proved that if f is a k-convex function, normalized by f(0) =0 and f'(0) =a >0,
then

I£(0)} < 2av1 - ok 3)

with equality if and only if
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oz
f(z) = 1—+/1— akez

for some real number §. We now establish a characterization of k-convex regions.

Theorem 2. A hyperbolic simply connected region ) is k-convez if and only if

2k
[Viegda (2)| < Aq(2)4/1— @ (4)

for all z in Q.

Proof. Mejia and Minda [6] showed the necessity. We establish a new proof. Sup-
pose €2 is k-convex. Fix a € Q and let z = f(w) be a k-convex function of (D, 0)
onto (2, a) such that

Ao (F)If' (w)] = ——

In particular, Aq (a) = 2/|f'(0)]. Also

1 1, ———
log A (f(w)) + 5 log f'(w) +  log F(w) = log 2 — log (1 - w) .
Applying the operator 6% to both sides of this identity, we obtain

dlog Aq (f(w))
0z

, 1f'(w) @
P+ 55w = 1w

For w = 0, this gives

dlogra(a) ., _1£(0)
oz 1 O="370);
so that
Viog za (] = 2| 2282 (@) L, ) )

The function

9(2) = (f(2) — f(0)) exp (—arg f'(0))

is a normalized (g(0) = 0 and ¢'(0) = |f’(0)| > 0) k-convex function. Therefore, by
(3), we obtain
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1! 1
701 = rof <2/ O = W ©
From (5) and (6), we obtain the inequality (4).

Conversely, suppose that the inequality (4) holds. Let z = f(w) be a conformal
mapping of D onto Q and let § be the circle w = w(t) =re®, 0 <t <21, 0<r < 1.
Then Kp (w,0) > 1. Let 0 = fod. Then z = 2(t) = f(6(2)),0<t < 2nis a
parametrization of the curve 0. Lemma 1 yields

Ko (2,0) = Ko (f(w), fod) = Kp (w,d) > 1.

From the definition of the hyperbolic curvature and the inequality (4), we obtain

K. (2,0) = Ka (7,0) Aa(2) — 2Im { mogazn(z) ljggl }

> )\g(z) — |Vlog )\Q (Z)l

2k
> Aa(2) (1 —4/1- mz—))

T "

As z(t) € o is arbitrary, we have K. (z,0) > kforall z € o and so f ({w: |w| < r})
is k-convex. Then Q = f (D) is k-convex since it is an increasing union of k-convex

regions.

Let f be a conformal mapping of D onto a k-convex region 2. We note that
the inequality (4) holds since €2 is k-convex. Then, by the proof of the sufficiency
of Theorem 2, Kp(z,v) > 1 implies K, (f(2), fo~y) > k. Thus, we obtain the
following results.

Corollary 3. Let v be a C? curve in D with nonvanishing tangent and 2 € ~v. If
Kp(z,7) 2 1, then K. (f(2),foy) > k for any conformal mapping of D onto a
k-convez region €.

Corollary 4. Let A be a disk in D. If f is a conformal mapping of D onto o

k-convez region 2, then f (A) is also k-convez.
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