e BEARTRAA A5 AL (1998 119)
C Journal of the Korean Society of Precision Engineering, Vol. 15, No. 11, November 1998.

A FZZ] | AYHY TRl R o] EX 2 (2)
—FETFzgdl A8

% X*

A Study on the Numerical Technique for the Nonlinear
Deformation Analysis of Solid Structures(2)
-Application to a Simple Solid Structure-

Youngjoo Kwon*

ABSTRACT

2 RdA e IATFZEY HAFARHH At diolgoz AEE FANYE S A TREY AL B &
Adl A 83 1 YA 79 AU &Y HE T Al FE FE-FSWY o] 4 BY AHHAY. £
Add iy fdeayel A5E Astd FHAA Fallst EAste YT MYo] AE3te deded HF L d4d 1
A%g £AA Fol v astict. va 23 & =F88 Tl /NEd vy fdesge] Fedel 4FHNH.

Key Words : One Dimensional Bar(Y 1%, Strain Energy Density(1¥ =011zl U%), Body Force(:|3), Load Para-
meter(3t5-ul7§®¥ 4=), Finite Element Discretization(#& 8 4% &), Material Nonlinearity
{ 24u)434), Incremental Tangential Stiffness Matrix(FE4 474 =39).

1. Introduction be used in the industry for the enhancement of

the design productivity. And so, the development

Recent advances in nonlinear solid deformation of powerful numerical computation technique
theories’"®, the numerical technique® and the becomes very important to mechanical engineers
computer capability make the numerical computa- nowadays. For this kind of purpose, in this paper,
tions of solid deformations possible. These numerical technique developed in the previous
advances allow mechanical engineers to develop paper for the nonlinear solid deformation analysis
the mechanical computer aided engineering sys- is applied to a simple solid structure, i.e, one
tem (so-called MCAE System). These developed dimensional bar. The incremental Newton-Raph-
MCAE Systems are now commercially available to son Scheme which is modified in this paper has
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been used for other applications®.
2. Problem Formulation

Consider the following problem, i.e., the one
dimensional bar of length L exerted by a distrib-
uted external load P(x) as in Fig. 1. The equilib-
rium equation will reduce to the following form for
the case in Fig. 1

oo

—+P(x)=0

1
Ew M

,where we denote O, =0 ‘normal stress,
f. = P(x) the given body force. And the boundary
condition is o(L) =0, i.e., the traction is free at
the end of the bar. If P(x) is prescribed, the solu-
tion of (1) is very simple, that is,

o(x) = -j' P(x)dx + const 2)

For the linear elasticity, the linear stress-strain
relation is satisfied until the limit point : this
limit point is usually characterized by the yield
strain g, =0.2%(= 0.002). Beyond this limit the
linear relation cannot be satisfied. Instead,
o =0(€) has the nonlinear form, e.g., 5 =ke"

1
more specifically, e.g., o=kve = ke? forn = yz
Usually, k=E ¢,'"orE=k €,"'. And hence, we
obtain the following two categories. For small
strain region,

Y
v,
P(x):body force load
e X:reference state
L
(xS
P y A= w,
x:deformed state
[

Fig. 1 Simple bar exerted by the body force
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o=Ee 3)
For large strain region,
o=ke"=E g, ¢ 3

For infinitesimal displacement, we get the fol-
lowing strain-displacement relation

_du

i (4)

, since v=w=0& ou/dy=2uldx=0@u,v,w are
displacements in x, y, z respectively) for this simple
bar case. Hence, we consider only the material
nonlinearity. Thus we are ready to obtain the
exact solution of (1) if the external body force
P(x) is prescribed. Here, let us assume

P(x)=a+bx* +dx*(N/m?) o)
, where a,b,d are positive values.
Then (2) becomes

o(x)=a(l - x) +§(L3 —x3)+—(51(L5 -x*) (6)

We have two solutions according to the consti-
tutive relations, i.e., linear and nonlinear solu-
tions. The linear solution is

Wx)= %[(au2 v +£51—L5)x—£x2 LN

7
3 2 12 30 o

The nonlinear solution is

2 2
u(x)= 1—1[(1121_2 c e oy 2o 2 o 2 i)
k 9 25 3 15 5
3
—@L+iar + Laary + 0 g+ Lpars
3 5 37 29 15
1 oa 2 s 11 o 1 a1
+—=abL)x” + —abx” ——(—d*L’ + —bdL’ + —adL)x
3 15 325 15 5
2 2
tr s oy + Zopae s L jor n=s
79 S 135 215 2
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3. Weak Form of the Problem (Variational
Formulation of the Problem)

To solve the problem using the finite element
method, we need the integral form of (1). For
this, we should know the potential energy of the
system, because the system will be in the equilib-
rium state when the potential energy is mini-
mum. The potential energy of the bar is given by

1(u) = [ W(e,x)dx — [ plou(x)ds )

, Where W(x, €) is the strain energy density.
I dw
W(x, €) is given by o(x)= —

Thus, for linear solid deformation
o(x) = W _Ee or W(x,€) = Ep (10)
de 2
and for nonlinear solid deformation
a(x)= w_ ke" or W(x,e)= —k—e"“ Q0
de n+l
Therefore, we obtain the following integral form
1w= " LEc?ax—['p dx 11
(W)= [ > Ee’dx - [ POu(x) an
for linear deformation
- L k n+l L *
I(w) = jo —¢ dx — jop(x)u(x)dx n
for nonlinear deformation
4. Finite Element Discretization
To evaluate the integral in Eq (9), we will
break it up into E subintegrals over each of the E
elements. That is, we will consider
E
I=I“)+1‘2)+---+I“’+---I‘E’=21“) 12)
e=1

., Where

1© = j fj W(x, il—di)dx - J‘?’(x)u(x)dx 12y

with x;=x, & x;=x,,

To evaluate this elemental integral, we will
need to know or assume something about the dis-
placement distribution within the element. The
easiest assumption to make is that it varies lin-
early over each individual element. And hence,
the complete integral of (12) will be a function of
the complete set of unknown nodal displacements.
That is,

I'=Ku, uy, --u, uj,---,uM) (13)

This relation can be written in a more con-
densed form by using matrix notation. We will
want to differentiate I with respect to each of the
nodal-point displacements to find a minimum of /
. To minimize I, we will then set each of these M
partial derivatives equal to zero, i.e.,

dl
=0 (14)

Where 0 is a column matrix of M zeros in this
case. Instead of working with 7over the entire
interval of integration, we will break it up into
elements by writing it as given by (12). Then

~ (14) becomes

E E (e}
ar_ iz 9=y aT 0 (15)
d! dﬁ e=l e=l d!

And we denote

dl® _ e dl?

du — du® (16)

, where the displacement matrix D'® is given by

[007
00

D9 =|1 0 a6y
01

[0 0]
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Using (16), we get

L.y 2“’d’—2=9 an

dy e=] d!

Within a typical element (¢) we will assume a
linear variation of #*. This equation may be
written in matrix notation as the product of a row
matrix and a column matrix. That is, we may get.

defining the following matrices

Pl — I x , R<=)=p<e>~l=i xX; —x
- 1 x;{ ~ - x;1~1 1

(where we have adopted the shorthand nota-
tion, that is, x; =%; ~x;)

u?(x)=p" R u 18)
Using the following notation,

dP”
dx

=pP,"=[0 1]

, we may write

(e)
o)=L =P RO 4 (19)

We are now ready to consider the integral I in
Eq (12). It will be convenient to consider the
integral in two parts by

19=19 -1 (20)
, where

10 = rj W(x i Q1)
R " dx

1o = J PO (x) dx 22)
L

Equation (20) may be substituted into Eq (15)
to give

E E
a _ @ dIy P

e=]

We are now ready to evaluate each of these
derivatives. This will be done for a typical ele-
ment (e), and then the results will be summed up
over the entire set of E elements. The results will
be as follows. Defining,

k(e)__f:_ 1-1
- x; -1 1

: elemental stiffness matrix for linear elasticity

(e)
a® = 4
a a,

with

2 242 4 3 4 6 5 6
a")—l (x;—x7) a+xj—4xjxi +3x; x; —6x,x] +5x;
& =
%y

2 12 30

2 2,2 4 3 4 6 5 6
T =X 3x; —4x,x; +x; 5x = 6x,x; + x;
a{":i[(x’ 2xr) a+ X IXZI T X b+ X; —0XX; + X; }
Xij
, we get
E
2 D(e)d(e)s(e) 24)

e=}

E
=Y D' g (for linear deformation)

e=l

E
>, D9deE)" 24y’

e=1

E
=Y Da'(for nonlinear deformation)
e=1

,where

E[ 1 -1 —kT°
K== & d¥ =
- Xij I:_l l:l - [ kJ

And hence, for linear deformation,

Ku=f 25

, Where

E
e e e T
K=Y DYK® D" : gobal (assembled) stiff-

e=1

ness matrix, and

E
f= z D¥g" . load vector.

e=1
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For nonlinear deformation, defining,

E

F(u)= 2 D94 (PTR® DOy
e=1
E

= Z D@ 4@ (g(e))n

e=1

, where
€9 = PTR® DOy =—(u,~u,)
X
ij
(24)* becomes

Fws=f (26)

Introducing the load parameter A such that
0< 1 <1, (26) may be written as

Fw)=Af 6y

This is the equation discussed in the general
theory developed in the previous paper(Part 1).
And the numerical general solution for this equa-
tion was treated in detail also in the previous
paper(Part 1).

Now the incremental tangential stiffness matrix

oF .
K, defined by Kr =, becomes for this one

dimensional bar, deﬁning_

K(b K(el
K- n 2 (27)
C O kE k2
. v 2
wih K- K-k =K =2 ey,
kP Ky o0 S0
KD k@@ 44 e - - - BN
o kP Kgk{ EFO -
0 {1 1} [C] 1]
K KaP Kﬂ.. ,Eu Ku o e
T kP Kk K
0 0 2
0 0 - . .
0 - K0 RSP KR
0 0 . k§  KP|

: (banded symmetric matrix)

Thus we are ready to compute the displacement
field using the above scheme, together with the
boundary condition, e.g., ¥, = 0 or u(0)= 0 for
this simple bar case.
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5. Results and Discussions

Using the modified incremental Newton-Raph-
son Scheme developed in the previous paper(Part
1), we may compute the displacements of the one
dimensional simple bar exerted by the uniform
body force. These computed results thay be com-
pared with the analytical results. These computed
results and the analytical results are shown in

Table 1 & 2.

Table 1. Nonlinear deformation analysis results for mild

material
Dk
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Table 2. Nonlinear deformation analysis results for very stiff

material
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The solid material in Table 2 is very stiff
(Young's modulus = 0.194x10°* Pa). Hence. the
deformation is expected to occur in the linear
small deformation region. Displacement in Table
2 is exactly such results as expected. However,
material in Table 1 is not stiff (Young's modulus
= 1.0 Pa). Therefore, deformation occurs in the
nonlinear large deformation region as shown in
Table 1. Hence, the linear solutions are meaning-
less in this case. As shown, in Tables, computed
results exactly agree with analytical results. And
so, the modified incremental Newton-Raphson
Scheme applied here is very successful.
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