Evolution of Micro-Structure and Compressive Strength in Poly(acrylonitrile)-Based Carbon Fibers

PAN 탄소섬유의 열처리 과정에 따른 미세구조 및 압축강도 변화

  • Song, Hyun-Hoon (Department of Macromolecular Science, Hannam University) ;
  • U. Santhosh (AdTech Systems Research Inc.) ;
  • W. W. Adams (Wright Laboratory, Wright-Patterson Air Force Base)
  • Published : 1998.09.01

Abstract

Micro-structure and fiber compressive strength evolution in a series of poly(acrylonitrile) (PAN)-based carbon fibers at various stages of the carbonizing process were studied. The compressive strengths of the fibers were determined by the tensile recoil test method. Wide angle and small angle X-ray scattering (WAXS, SAXS) and low voltage high resolution scanning electron microscopy (LVHRSEM) as well as thermogravimetric-mass spectral analysis (TGMS) were used to determine the fiber micro-structures. The compressive strength improves through the stabilization and carbonization stages and reaches a maximum at the early stage of graphitization. Further treatments at higher temperatures reduce the fiber compressive strength. The changes observed in the fiber compressive strength were compared with the micro-structure and structure-property relationships were determined. Two parameters, based on the Euler buckling equation, namely, material's stiffness and geometrical stability derived from the X-ray scattering intensities, were utilized to estimate the buckling stability of the fibers. Initial increase of fiber compressive strength was primarily due to the conversion of the PAN fiber into a much stiffer graphite layered structure. At later stages of the process where the conversion was completed, the loss of geometrical stability of the fiber played a dominant role to reduce the fiber compressive strength.

Keywords

References

  1. Chemistry and Physics of Carbon v.9 R. Bacon;P. L. Walker, Jr(eds.);P. A. Thrower(eds.)
  2. MRS Symposium Proceedings v.134 S. Kumar;T. E. Helminiak
  3. J. Mater. Sci. v.23 S. J. Deteresa;R. S. Porter;R. J. Farris
  4. J. Polym. Sci., Part A v.30 W. Sweeny
  5. J. Reinforced Plast. Composites v.7 S. Kumar;W. W. Adams;T. E. Helminiak
  6. D. P. Anderson
  7. J. Mater. Sci. v.10 H. M. Hawthorne;E. Teghtsoonian
  8. J. Mater. Sci. v.28 S. Kumar;D. P. Anderson;A. S. Crasto
  9. Proceedings in ANTEC W. Huh;S. Kumar;T. E. Helminiak;W. W. Adams
  10. J. Mater. Sci. v.20 S. J. DeTeresa;R. S. Porter;R. J. Farris
  11. Polymer v.22 M. G. Dobb;D. J. Johnson;B. P. Saville
  12. J. Appl. Poly. Sci. v.28 T. Takahashi;M. Miura;K. Sakurai
  13. J. Mater. Sci. v.9 J. H. Greenwood;P. G. Rose
  14. Carbon v.9 W. R. Jones;J. W. Johnson
  15. Composites v.19 D. Purslow
  16. J. Mater. Sci. v.23 S. W. Yurgatis;S. S. Sternstein
  17. J. Mater. Sci. v.10 C. W. Weaver;J. G. Williams
  18. J. Mater. Sci. v.16 T. V. Parry;A. S. Wronski
  19. J. Mater. Sci. v.25 M. G. Dobb;D. J. Johnson;C. R. Park
  20. J. Mater. Sci. v.22 no.3 S. R. Allen
  21. D. P. Anderson
  22. Mater. Sci. & Engr. v.17 P. J. Goodhew;A. J. Clarke;J. E. Bailey
  23. Gotteinger Nachrichten v.2 P. Scherrer
  24. Chemistry and Physics of Carbon: A Series of Advances v.4 W. Ruland;P. L. Walker Jr.(ed.)
  25. Acta Cryst. v.22 W. Ruland
  26. J. Poly. Sci., Pt C v.28 W. Ruland
  27. J. Appl. Cryst. v.2 W. Perret;W. Ruland
  28. J. Appl. Cryst. v.3 P. Perrer;W. Ruland
  29. J. Mater. Sci v.25 N. Melantis;C. Galiotis
  30. Fracture of Composites, in Treatise on Materials Science and Technology A. S. Argon