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OPTIMAL GEVREY EXPONENTS FOR SOME
DEGENERATE ELLIPTIC OPERATORS

TADATO MATSUZAWA

ABSTRACT. We shall show first general Métivier operators DS +
(22 +y*)D?, 1,k = 1,2, -, have Gi5™ hypoellipticity in the vicin-
ity of the origin (0,0), where 0= —%ﬂ:& d= fii (> 1), and finally
the optimality of these exponents {d,d} will be shown.

0. Introduction

The aim of this paper is to determine the optimal non-isotropic ex-
ponents of Gevrey hypoellipticity for the general Métivier operators
D2+ (z¥+y**)D2 1,k = 1,2, -, in the vicinity of the origin (0,0) € R?.
We shall give the precise deﬁmtlon of the Gevrey spaces at the beginning
of §1.

In the paper [11], we have considered Gevrey hypoellipticity for a
class of degenerate elliptic operators now called Grushin operators. We
treated them essentially dividing into three groups. Those operators in
the first group are analytic hypoelliptic in the space of hyperfunctions,
and the operators in the second and the third group are Gevrey hypoel-
liptic in the ultradistribution spaces in a neighborhood of the origin.
The typical examples in the first group are given by DZ +y*D2 1 k,=
1,2,--- . The second group is represented by the general Métivier oper-
ators D2 + (% +y*)D?, 1,k = 1,2, ---, which have G{%}-hypoellipticity

with 0 = %Z)k-,; > 1 and the third group is represented by the general
Baouendi-Goulaouic operators D2 + y**D2 + y*D?, k > | > 0, which

have G#}'-hypoellipticity with p = ll:'l“ > 1 by the results of [11].
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On the other hand, in the paper [2], A. Bove and D. Tartakoff proved
that the above Baouendi-Goulaouic operators have non-isotropic Gevrey
hypoellipticity in the space Gi‘f;;ﬁz’d”, where d, = llfr’lc = p,dy = 55, k dy =
1 in a neighborhood of the origin. They also proved the optimality of
the above exponents {d;,ds,d3}. Their result means that Baouendi-
Goulaouic operators are analytic hypoelliptic only in the z-direction.
Their method of the proof is very elementary using L2-estimates.

In this paper, in §1, we shall show the non-isotropic Gevrey hy-
poellipticity for the above Métivier operators in the spaces Gg?’,d} with
0 = l(ll(}r:)'?k and d = fii by applying the method of [2] and the re-
sult of [11], (see Theorem 1.3). We notice that 1 < d < 6. In §2
and §3, we shall consider the optimality of these exponents by applying
the original idea of G. Métivier, [13], which means that Métivier op-
erators are not analytic-hypoelliptic in all the direction. The proof of
the optimality will be done by the contradiction generated by the as-
sumption that the operatorDZ+ (2% + %) D2 has GY4} hypoellipticity,
1< @ <0,1<d <din aneighborhood of the origin (0,0) € R2.

1. Non-isotropic hypoellipticity of the Métivier operators

DEFINITION 1.1. Let € be an open set in R™ and ¢ € C*(£2). Then
we say that ¢ € GI4(Q),6 > 0, if for any compact subset K of §2 there
are positive constants Cy and C) such that
(1.1) sup |D%p(z)| < CoCal?, o e Z7.

xeK

We say that ¢ € Gldv%-4}(Q) 0 < dy,dy, - -+, d,, if for any compact
subset K of {2 there are positive constants Cy and C; such that

(1.2) sup |D%p(z)| < C’OC’{O‘IOQ!d‘ozz!d2 ceap® o€ 27,

reK
a

PROPOSITION 1.1. Let ¢ € C®(Q). If for any compact subset K of
Q there are positive constants Cy and C) such that

(1.3) sup |D;~°g0| < CoCk\, §=1,2,--- ,n, k€ Z,,
zeK

then we have p € Glddad}(Q),
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Now we consider the operator, (general Métivier operator)
52 H?
P=—-{— ALy Y 1 keN.
(5 + @ +v™) ), Lk e

We assume (0,0) € © € R2, and Q is a bounded open set in the
following. We denote by [|u|| = ||u}|12(q).

THEOREM 1.1. If the diameter of ) is sufficiently small, there is a
positive constant C such that

(1.4) lowll + oyl + 1ol + [z vez]] + |ly™vsel] + [ly vz ||+
Ily" 2 vl + [[2"vs ]| + [ly" el < ClIPo], v e ().
Proof. First we have
(Pv,v) = [loy|? + [lyva| 2 + llztual|* + 2(z'oz, 210,
from where we get the estimate of type
loyl] + 1y*val| + |le've|| = Culla'=1o]| < Col|Po|, v € CF(9Q).

On the other hand, by the Poincaré inequality, we have for any posi-
tive number ¢

elloll < lluyll, v e G (),
if we take the diameter of 2 sufficiently small. Then we have the estimate
of the kind

llogll + ly*ve | + llzval] + [loll < ClIPoII, v € C5(Q).

Next, considering (Pv,vy,), (Pv,z%v,,) and (Pv,y*v,,), we arrive
at the estimate of the form

||Uyy|| + HxlvzyH + HykvzyH + ”3721'”:51” + ”zlykvzz“ + ”ka'UMH + “Uy”+

llz'vall + Wy vall + [lof] = Clly™vaf < C"[|Poll, v € CR(9).

We can see that for some constants A > 0 and B > 0 the following
inequality holds:

1y  Mvel] < Allogy + v vee]] < B(llugll + [ly™vasl]), v € C(Q),
(see [4]).
Hence we have with some constant C

" usll < C(1Pv]] + |2 vesll), v € C52(Q).
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If we take the diameter of Q sufficiently small again, considering with
(Pv, z%v,,;), we have the inequality of the kind

|2 05 || < Cllvgl| + 1IPv]]), v e C(Q),
and we have finally the estimate (1.4). O

As a particular case of the results of [10], we have the following the-
orem.

THEOREM 1.2. Let u € C®(Q) and f € GI}(Q) satisfying Pu = f

inQ. Thenu e G% 9 = a(i:f)k

The purpose of this section is to prove the following theorem.

THEOREM 1.3. Let u € C®(Q) and f € G%9}(Q) satisfying Pu = f

in Q, where § = l('l(i:)k) z and d = fiﬁ Then v € G a(Q).

Proof. First noticethat 1 <d <@ forl,k =1,2,..- . We take a func-
tion ¥ € C(Q) N G{% such that 1) = 1 in a small open set w C @ C Q.
We assume that 0 € w and we may assume j > 2k. By the inequality
(1.4) we have

|DjyDjull < C||PyDjul|

< C{llwDyPull + I[P, ¢ Djjull}

< C{llwDjPull + |1y Dyull + 2|9, D ull + ||lz*4s” Djul|
+ 2H$2’¢’Dj Dyul| + 2|[9,y* D} Doul| + |[97y™ Djull

" Z (7) sty D2l

By assumption, the first term on the right is estimated by the quantity
of the kind CoCJj!® and we may consider the next six terms are also
estimated by the same quantity since the operator P is elliptic outside
of the origin and ¢’ and " vanish on &@. Therefore, we have to consider

(1.5)
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each term of the last summation on the right. First take the term with
r = 2k which is essentially estimated by

i =1)+- (5 — 2k + )| D) Dul|

. . 2 Mi—2k—2 N2

=j( = 1) (4 — 2k + 1)|[$D, Dy Dzul]

<j(F—1)...(j = 2k + 1){||Djy D} > Dlul|

i—2k—1 )2 i—2k—2 )2
+ 2|l Dy Dul| + |14 Dy~ Dyul[}.

Again there is no problem for the last two terms. For the first term we
apply the estimate (1.4) with j to j —2k —2=j —2(1+ k) as in (1.5).

Repeating this cycle j/2(1 + k) times, we may consider this is bounded
by

Cij!k/(l-rk)l[,l/)Dé/(lJrk)ull < Cocfj!(0+k)/(1+k)’

where we have used the result of Theorem 1.2.
Next take the term with » = k in (1.5) which is essentially estimated by

iG=1)-- (G —k+ VY D,D 9D’ D,ul|.

Now we can apply the estimate (1.4) with 7 to j — (1 + k). Repeating
this cycle j/(1 + k) times, we may consider this is estimated by

Cij!k/(nk)l|¢D£/(1+k)u” < Conj!(“k)/(”k).

When k = 1 the proof is finished. So we shall consider the case where
k > 2 in the followimg. O

The principal new disturbing term in the right-hand side of (1.5) is the
term with r = 1 : 5(2k)|[4y** ' DI~ D2u||. This is essentially bounded
by

3y Dy Datpy* ' D} Dyul| < Cjl|Pypy*~' Dy~ Dyull,

where we used the estimate (1.4). The right hand-side of the above
inequality is bounded by

H{llwy* ' Dy 2D, Pul| + I[P, ¢y" " D} * DaJul|}.
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The term we need to estimate in the right-hand side is

Jly* DY, Yyt DI’ D, Ju
— 2j¢zly3k—le~2D2u +j1/)$n 3k—1D£—2Dzu
J—2\_ (2k)! 3k—r—1 j—2-1 13
DT Dhu
+]Z< r ) (2k —r)! d)
Again the principal disturbing is the term with r = 1 which is
(5 — 2)2kyy** 2 Di~2 Diu.
This is essentially bounded by
(7 = 2ly* D2y*2Di* Dl < Cji(5 — 2)|| Pyoy*~2DI*Dyull.
After k — 1 times of these steps we will have the bound of the form
C*3*|| Py DI~k D,ul|.

Repeating this cycle j/(1+ k) times, we may consider that we have the
bound of the form

Cijjk/(uk) | |P¢D;‘/(1+k) | < C'oé’fj!(9+k)/(l+k).

We can see the terms with 7 > 2 in the right-hand side of (1.5) are not
so harmful by the method of the consideration similar as above.

2. Formal solutions

We shall construct formal solutions to the equation

i o?
@) PU=- {2 @) 5 U =0, (k)

in a neighborhood of the origin (0,0) € R2.
Putting 6 = I(1+k)/{I(1 + k) — k}, we consider the integral of the form

(2:2) A(u) = / 02 gru(o, yo +M)dg,
where r is a parameter determined later and u(g, t) is an infinitely differ-

entiable function in R, xR, with support in ¢ > 0 and rapidly decreasing
as g — 00.
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Applying the operator P for (2.2) with t = yo®/(*+*) we have
PA(’LL) - _ /eigozgr+20/(1+k)8t2u(g, t)d@

+ /€i99z9r+20$21U(Q, t)dQ + /eig9zgr+20y2ku(g, t)dg.

For the third integral in the right-hand side, since we have

(2.3)

o7 My — gr =20/ (1+) (

=0

yg()/(1+k))2k

r+20/(1+k) 12k
b

it holds that

PA(u) :/ei"ng’”g/(”k){—@? + t*}u(p, t)do

_+_/ezgezgr+29 QZ'U,(Q, )

We shall deal with the second integral in the right-hand side of (2.4) to
replace z# by a differential operator in o as will be seen in (2.7). We
shall need the following formula of Faa di Bruno for the derivatives of a
composition of two functions:

LEMMA 2.1. (cf. [9]) Let I be an open interval in R and suppose
that f € C°(I). Assume that f takes real values in an open interval J
and g € C*(J). Then the derivatives of h = g(f(t)) are given by

" (¢ k1 f(")t k,
o Zk,kz — (f—lf—)) <%> |

where yp = ki + ko + - - - + k,, and the sum is taken over all ky, - -- , k, for
which ky + 2ky + - - - + nk, = n.

(2.4)

We apply Lemma 2.1 for g = e/(@ f(p) = ig’z, then we have
82’ e’z

- Sl (8 (452 (e

'(Z‘,E)ugue 21 zgz
ZC ’Lm ugp.o -2l zgz
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where p = ki +ko+ -+ ky and k; + 2ky + - - - + 2 ko = 21. We see that
1 =2l only when k; =2/ and ky = k3 = --- = ky; = 0. Hence we have

(_1)1(9I)2l921(0—1)eig% _ agleigoz _ Z C(’u)(iw)ug;w—?leig”z.

1<u<2
Multiplying both sides by (—1)!§-2%or+2%/(1+k) e have

Qr+2€1.21 eig”z — Qr+20/(1+k) (_1)19—21 821 i’z

(25) + Z Cl r+(2+u 21)0 zgz

1<pu<al-1

where we use the equality

20/(1+k)+ 20— 1) =20/(1 + k) + 216 — 21 = 26.

The highest degree with respect to z in the right-hand side is 2 — 1 and
of which term is given by

I = Cy(2 — 1)(iz) 21 +0eid’s.

Again by using the formula of Faa di Bruno, we have
821 1 zgz‘ ZC2 'LQ? yQ/_LG 21+1€’LQSL‘

where pu = k‘1+k2+"'+]€21_1 and k‘1+k‘2+"'+(2l—1)k21_1 =20—1.
The highest degree with respect to z in the right-hand side is 2/ — 1 and
we have

Cy(20 — 1) (iz) 2~ p- V- 2A+1id’s
= 02[-—169 Z C2 (Z.r)ug}le 21+1ezg T

<22
Multiplying both sides by {C1(2l — 1)/C5(2l — 1)} +%#/(1+k)~1 we have

C (2l _ 1)( 20— l)gr+oeigoz 2Qr+26’/ (1+k)- C ( )821_1 iz
— Z Cg r+(2+u 20)6 zga:

u<2-2
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By using the formula of Faa di Bruno recursively, considering with the
expression (2.5), we arrive at the formula:

al
(2.6) gr+29$2lei90“” — Z C’jg’+29/(1+k)—ja§l—jei9"x7
=0
where Co = (—1)'0°% C;eR, j=1,---,2l
Thus, we have obtained the formula:

PA() = [ &7 00} + Jue, t)de

(2.7) 2 ‘ ‘
+Z/8§z—] (elgez) Qr+29/(1+k)—]Cju(g, t)do.
3=0

There remains to consider the second summation by the integration by
parts which will be equal to

2 A=j A—j—u

Z Z Z / eigﬂzQr+29/(1+k)—j—pCj'mV{agl—j—p—utvazl}u(07 t)dg

j=0 v=0 v=0

We know that Cy = Cpgo = (—1)!07%, Cio0 = 2l{r+20/(1+k)}+C; =
C(r), so that we have

2zl

(2.8) PA(u) = / ede Y BRI (g, t)do,
3=0
where
Py = ._at2+t2k+ (_1)!9-—2!33!831’

P = C(r)dd '+ C9 s, +C,

J
Py o= > Cdl it oy +Cl, j=2,---,2.
v=0
Here we have seen that C(r) = 2lr+26/(1+ k) + C; and C;,C’ and C”
are independent of r.
Now the differential operator

— +t* —co<t< oo,
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is self-adjoint and positive definite in L?(R) and its eigen-values and
eigen-functions are well known and denoted by A, and ¢,,v =0,1,--- .
We know that we have

(2.9) Ay ~ Oy —s o0, (cf.[16]),
and
(2.10) v € S R),  (cf[11)),

that is to say, there are positive constants Cy and C), such that

(2.11) | 2D, (t) | <CoOL Pt B4R g || 1oy,

a, ﬁ € Z-Ht € R7
or equivalently we have

(2.12) | DY, (t) |< CoCE, B P eap(—at/ T H]lp, |,

teR,0e€Z,, (0<a)

We can see that Cy, = O(A,), v — oo, (cf. [11]). We assume that{y,}32,
is an orthonormal system in the following. We remark that (2.12) is also
equivalent to the estimation of the following type:

| (t +i7)] < Cexpl—a,[t|™** + b, |7,
t+ir€C,0<a,<b, <00, (cf.[3])
As in the paper [13], we denote by Il the orthogonal projection on
L*(R,) ® @o(t). Then Il and Py are commutable and if we define H; by

the formula ITyP;( f(0)wo(t)) = (H;f)(0)¢o(t), we obtain by the expres-
sion (2.8) that

(2.12)

Hy = X+ (-1)'07%5%,
H, (2r + )03+ ¢,

where ¢ and ¢ are the constants independent of r. Let by be a 2] — th
power root of —8%), with the smallest positive imaginary part. Then
we can see that Hye'® = 0 if we take r = 51 {(¢//bo)*~! —c}. This yields
that H()Pgeigbo . (p()(t) = 0.
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We shall define a formal solution u = } ;.. yu; of PA(u) = 0 starting

with ug(g,t) = €% . y(t) and resolving recursively the equations for
i1

min(j,2l)
P()(I - Ho)’U.j = - Z Q_n(.[ - HO)Pnt_n,
n=1
(213) PoHon = —Q_IHUP1(I — Ho)u]' — Q—lno'PlHou]'_l
min(j,2l-1)
- Z 0-(nr1)IIoPrs1tjon.
n=1

Since we start with Poup = 0 and IIyPiug = 0, (2.13) will be nicely
solved (see §3). Formally we have for j > 2!

Po(uo + uy +ug + -+ +uy) =
— Q—lpl(Uo +ur+ -+ uj)
— 07 Po(ug + ur + - -+ +uj_9)

(2.14)

— Q—2IP2[(’LLO +uy+---+ uj—ZI) — Q—IHQPJ‘(I — Ho)Uj
— 0 My Pyuj1 — 0 Mg Paujg — - - - — 0 2Ty Pottj_gi41-
Also we have formally for 7 — oo
2

(2.15) PQUj ~ — Z o nUj—n ™~ O(Q-j)'

n=1

3. Optimality of the index {6,d} for the operator P in (2.1).

Let A\,,v =0,1,---, be eigen-values for the operator Q) = —:—; + 1%

in L2(R). We write £y = Hy and consider first the fundamental solution
of the operator £, = A\, + (_1)19_21331, v=01,---:

_ (ot [ i K
oy BO=e ]

= O(e"-‘-"gb”), —00 < 9 < 00,
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where b, is one of the 2lth roots of —6% ), with the smallest positive
imaginary part for each v =0,1,2,... . Then we have

(3.2) 0<SQby <y <-+- <, <+

We shall construct the approximate solutions‘of (2.14) in the following
form:

uO(Qa ) = eib,,g . @O(t)v
(33) (20+1)5

Z fin(0) - 0u(t), F=1,2,....

Then we have

2041

(I - Th)u; = Zflu o (

Therefore, by (2.14) the equation for (I — Pig)u, is given by

20+1
Po(I —Tp)uy = Z(Aﬂr (—1)'60728%) f1,.(0) - wu(t)
v=1
= —o (I - )Prug

2l+1

= —0') (Piuo,¢)-¢
v=1

from where we have

L, f1.(0) =(A, + (_1)10_218§l)f1,u(9) = _Q_I(PIUO, )

(3.4) =g1.(0),
0<o<oo, v=1,2,...,2l+1.

We can see easily that there are positive constants Cy and C) such that

(3.5) | 8Zg1,,,(g) |< CoChple ™2 14+ h<p<oo,v=12,....

Now by virtue of (3.2) and by using the fundamental solution E, in (3.1),
we can see that there is a solution fi (o) of the equation (3.4) in ¢ > Ry
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for sufficiently large Ry such that

(3.6) | 92fiule) IS CoCteTle™™™, Ry+h < o< oo,
v=12,...20+1, h=0,1,2,...,
where Cy and C) are another couple of the constants.

We illustrate how to derive the estimate of the kind (3.6). We can
take a solution fi,(p) to the equation (3.4) as an integral

fin(o) = /R Eo—T)gi.(T)dr, Ry <po<o0

Then at first we have to estimate the integral of the kind

e}
/ e tlemlrle®Tdr 0 < by < B,
Ry

[ [o o]
. —H 1 —- N
=e bl"/ (b1=tg)r 1d7'+/ e~tile=ml—1e=b7 g
Ro o

=I+11I

We can easily see IT < b, p~1e™%2,0 < ¢ < 00. As for I, if we take Ry
sufficiently large, we can see that

o ! g 2 g 7

/ =% =1gr < me(bl‘bo)gg—l, Ry < p < o0.
Ro 1 0

On the other hand, by (2.13), we have the equation of the form

Pollour = Lo fro(0) - ¢o(t) = g10(0),
where we can see g; o(p) satisfies the estimates of the form

(3.7 | 3391,0(@) |< CoCho™%e™™e 14+ h<p<oo, h=0,1,....
Here the condition IIiPiuy = 0 is crucial. By using the fundamental
solution Ey, we have the same estimates as in (3.6) for f; (o) as follows.
We know that Ey(p) is a sum of e®lel j = 1,2 ... I And we may
consider that g, () = 0,0 < Ry and g19(0) = O(0~'e~%¢). Therefore,
in order to estimate

/ Eo(o — T)gro(r)dr, 0 < g < oo,
0
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it’s sufficient to consider

e ) Sl
eb""/ e’bngLo(T)dT—Feij“/ e~ g o(7)dr
0
= ¢'we / eZb"Tgl,o(T)dT — e / eijrgl,o(T)ah'
0 0

(o]
+ ethie / " g1 o(T)dT
0
eie . Const. + O le™3he).

On the right-hand side, €% is a solution of the homogeneous equation
Lou = 0,0 < p < 00, and we have the estimate of the kind (3.6) for fi,
in case h = 0 by subtracting such a part.

Next, by using the induction procedure, we can prove the estimate of
the kind

lazfj»V(Q” < CoCIth o IeShe,
(38)  |0hH f;0(0)l < CoCI™ (5 +1)lg77 e e,
R+ +h<p<oo,v=01---,20+1)5 5=12---.
Now we take cut-off function x;(0) € C*°(R) such that

x(@) =0 for o<2(j+1)Ry,
x(0) =1 for p2>4(j+1)Ry,

3.9
B9 el < Chtorh <
where Cp Is a constant independent of j and h.
We define
(3.10) u(o,t) = Z xj(e)u;(o,t).

=0
Then we can see that there are a couple of the constants Cy and C; such
that

(3.11)  |82u(e,t)| < CoCratF/ k) fallixhlg=She o —0,1,2,...,

—~00 <y < o0, (t= ga/(”k)y),
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from where we have

_0+k
14K
Next we can see that there exists a constant M satisfying

U(z,y) = Au) € G2 (R?), d (see (2.2)).

M
(3.13)  [u(o,t) —uo(o,t)] < ?ewp[—%bog], (0,t) e R? 0> 0.

On the other hand, since ¢4(0) > 0, (cf. [16]), we have for sufficiently
large o

(3.14) Ru(o, £) > %900(0)5%9.

Furthermore, by virtue of the construction of u(g,t), we can write

(3.15) PA(u) = A(v + w),

where for w(p, t) for any v there is a constant C, such that

|05w(o,t)| < G+ g/ (1K) ghar/ (1+k) o= Stoe

for sufficiently large o, from where we have the estimates of the kind

(3.16) 18288 A(w)| < C.e@Dalipe, (o, 8) € Z2,

for any € > 0. Asfor v, (cf. (2.15)), roughly speaking, for o ~ Ry(j+1)
we have

(e, t)| ~ CoCijlo e Ste

G ’ —Sboo
~ Co (e_.R_g> e

G\ ~She
~ o)

where C) is independent of Ry and finally we see that for any § > 0 if
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we take Ry sufficiently large we have the estimation of the kind

ia;xv(g7 t)l < C()C?Oz!k/(Hk) QOa/(1+k)6ge—~%bog

3.17
( ) — COCixa!k/(1+k)99a/(l+k)eg(log5—9bo)’

from where we have finally the estimation of the form

6208 PA(u)| < Ce@Platdpl, (o, B) € Z2.

Here we can take & > 0 arbitrarily depending on Ry.

The final step will rely upon the results of G. Métivier, [12]. Since
the estimate of type (1.4) holds for P and P* the hypothesis H; in [12]
is satisfied. Then we can apply the slight modification of Théoréme 3.1
in [12] for the case of Gevrey hypoellipticity instead of analytic hypoel-
lipticity, which yields that if P is G{¢¥}*-hypoelliptic in a neighborhood
w (say bounded) and 0 < d' < d,0 < § < 0, then there are positive
constants L and C satisfying

sup |0§8£A(u)| < C(Le)e+Patip (a,p) € z2.
@

This is impossible because of (3.14) and (2.12)' with v = 0 if we take
¢ sufficiently small. Thus the optimality of the Gevrey index {d, 0} for
the operator P is proved.
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