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THE KNOT 5, AND
CYCLICALLY PRESENTED GROUPS

GoANsU KiMm, YANGKOK KIM AND ANDREI VESNIN

ABSTRACT. The cyclically presented groups which arise as funda-
mental groups of cyclic branched coverings of the knot 55 are studied.
The fundamental polyhedra for these groups are described. More-
over the cyclic covering manifolds are obtained in terms of Dehn
surgery and as two-fold branched coverings of the 3-sphere.

1. Introduction

The cyclically presented groups comprise a rich source of groups,
which are interesting from a topological point of views. The connec-
tion between cyclically presented groups and cyclic branched coverings
of knots and links was studied, in particular, in (3], (6], [10], [11], [12],
[16], [19], and [20].

Let F,, = (z1,...,z,| ) be the free group of rank n and n: F, —
F,, be the automorphism of order n such that n(z;) = 2,41, =1,...,n,
where the indices are taken mod n.

We recall [15, § 9] that for a reduced word w € F,, the cyclically
presented group G,(w) is given by

(1) Gn(w) = (z1, ..., Ty | w, n(w), ..., " Hw)).

A group G is said to have a cyclic presentation if G = G, (w) for some
n and w.

Clearly, the automorphism 7 of F,, induces an automorphism of G, (w).
This cyclic automorphism has order dividing n and so we can consider
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the group Gn(w) which is the split extension of G,(w) by the cyclic
group of order n. It was remarked in [6] that the group G,(w) always
has a 2-generator, 2-relator presentation of the form

(2) Ga(w) = {t,z|t" =1, o(t,z) = 1),

where v = v(t, z) lies in the normal closure of " and z. Conversely, any
group with such a presentation is the split extension of a G, (w) for some
n.
Let X be a knot in the 3-sphere S3. We will say that a three-
dimensional manifold M is a n-fold cyclic branched covering of the knot
K if M is the n-fold cyclic branched covering of S* branched over the
knot K [2, Ch. 4], [26, §10C]. In other words, M is the covering of the
orbifold K(n) with underlying space S and singular set the knot K with
index n. In this case the fundamental group of the manifold M has the
cyclic automorphism and the split extension is the group of the orbifold
K(n). So, it is interesting to find the cyclic presentation for the fun-
damental group of the manifold, corresponding to this cyclic covering.
Moreover, the problem of the distinguishing of the underlying space and
singular set of the quotient orbifold arises.
For K = 3,, the trefoil knot, it was shown in [3] that the fundamental
group of the n~fold cyclic branched covering of the knot 3, is isomorphic
to the Sieradski group S(n) with the presentation

(3) S(n) = (Z1,-+ T | TiTive = Tip1, 1=1,...,n),

where the indices are taken mod n. In this case w = z,z375".

For K = 4;, the figure-eight knot, it was shown in [10] that the
fundamental group of the n-fold cyclic branched covering of the knot 4, is
isomorphic to the Fibonacci group F(2,2n) with the cyclic presentation

F(2,2’l’l) = <0,1,...,a2n f a; Qi1 — Qiq2, 1= 1,...,271),

where the indices are taken mod 2n. In this case the covering manifolds
are said to be Fibonacci manifolds. Considering elements z; = ay;, by
Q2j+1 = agjl azj4+2, we get the presentation

(4) F(2,2n) = (z1,...,zn | 27 23, 2725 = 1, j=1,...,n),

where the indices are taken mod n. In this case w = 27 z3z3 ' z,.

In both above cases the cyclic presentations are closely connected with
automorphisms of the free group Fy, because knots 3; and 4, are fibre (2,
Ch. 5C] and the commutator subgroups [7(3;), 7(31)] and [7(4;), 7(41)]
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are free groups of rank 2. In particular, it turns us to the construction of
the Fibonacci manifolds by Dehn filling on once-punctured torus bundles
[12]. We recall [2] that all knots fall into two different classes according
to the structure of their commutator subgroups. The first of them com-
prises the knots whose commutator subgroups are finitely generated, and
hence free, the second one those whose commutator subgroups cannot
be finitely generated. The knot 5, is the simplest example of the second
type.

In the present paper we consider finitely generated groups G,, n > 2,
with the following cyclic presentation

(5)

_ -1 -1 1 .
Gn=(T1,.. ., Tn | Ti Tiyo T Tiga T TiTiy = 1, i=1,...,n),

where the indices are taken mod n. In this case w = 2,325 ‘2375 2125
We will demonstrate that these cyclically-presented groups are closely
connected with the 2-bridge knot 59, that is the closure of the rational
(7/3)-tangle (see [2] or [26] for knot notations).

In section 2 we will describe the fundamental polyhedron for the
group G, and demonstrate that this group is the fundamental group
of a three—dimerlsional manifold M,,. In section 3 we will consider the
split extension G, of G, by the cyclic automorphism corresponding to
the presentation (1) and will show that G, is the group of the orbifold
52(n) and the manifold M, is the cyclic branched covering of the knot
5y. In section 4 we will study topological properties of manifolds M,.
In particularly, these manifolds will be obtained by Dehn surgery and as
two-fold branched coverings of S3.

2. The polyhedron P, and the group G,

In this section we construct the fundamental polyhedron (or a squash-
able complex according to [28], [3]) for the group G,, and demonstrate,
using the Siefert—Threlfall criterion, that GG, arises as fundamental group
of a 3-manifold.

THEOREM 1. For n > 2 the group G, is a fundamental group of a
three-dimensional manifold.

Proof. Let us consider a polyhedron P,, n > 2, whose boundary,
which can be regarded as the 2-sphere S?, consists of n triangles T =
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NA;A;;, in the north hemisphere, n quadrilaterals Q) = SB;C;B;,, in
the south hemisphere, n triangles 7; = A;_1B;_1C;_; and n quadrilater-
als Q; = A;Ai11B;11C; in the equatorial zone, where ¢ = 1,...,n, and
all indices are taken by mod n. In this case P, has 4n faces, Tn edges
and 3n + 2 vertices. The polyhedron P, is pictured in Figure 1. Let us
consider the 1-skeleton of P, with orientation and labelling of its edges
in the following manner.

N
T4 ) Z2 Y Z3 T4
T, T} T, T,
Ay A A ) A3 Ay
Ys Yy vz v
Q4 Q Q2 Qs
z 1 T\ ¥ z2 1 T\ ¥2 963‘} T3\ Y3 334‘* T4\ Ya $1‘f
fvz 34 :’53 Y T4 Y2 I Ys
By ~~Ci B\ C B G /B C,— B
Q4 1 | 2 Qs
Y4 % Y2 4 Ys Ya
S

FiGURE 1. The polyhedron P,.

1. The oriented edges fall into 2n classes: z;, 2 = 1,...,n, where each
class x; consists three edges, and y;, : = 1,...,n, where each class
y; consists four edges. In this case oriented edges from the same
class carry the same label.

2. For each ¢ = 1,...,n the boundary cycle of the triangles T; and T}
is x;lxi+1yi with the indices taken mod n.

3. For each 7 = 1,...,n the boundary cycle of the quadrilaterals @;
and Q! is y;." ¥iTi+2y; with the indices taken mod n.
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Now we consider pairwise identifying of faces of the polyhedron P,.
Foreach i =1,...,n let ¢; identifies triangles T; and T}, and ¢; identifies
quadrilaterals @); and @} such that the corresponding oriented edges of
polygons carrying the same label are identified.

Therefore we get the following cycles of equivalent edges. For the
label z; :

-1 -1
Bi_14i i* NA; ti& B;_2Ci_y (]1—_§ B4,

whence

t tz IQZ 2 = L
Analogously for the label y; :

. q._l t:
ArAs =5 CiBiy 25 SB %5 CioiAi =5 A4,

whence

Gaght = 1

The resulting complex M,, has 1 vertex, 2n edges, 2n two-cells and 1
three-cell.

There is a following criterion, due to H. Seifert and W. Threlfall
(27, p. 216], for M, to be a manifold: A compler, which is formed by
identifying the faces of a polyhedron will be a manifold if and only if its
Euler characteristic equals zero.

Applying this criterion to our case, we get that M, is a 3-manifold
and its fundamental group has the following presentation:

(6) 7.‘-I(Mn)‘:<t17"'7tn1q17'-'7qnIttz qu2:1

Geg Lt =1,i=1,...,n),
where the indices are taken mod n.

As one can see, the group 7 (M,,) with the presentation (6) is isomor-
phic to the group G, with the presentation (5). Indeed, from relations of
the first type in (6) we get ¢; = t;40t;;)|, and substituting into relations
of the second type we will get

W](Mn):<t1,.. n|t1+2tl+ltz+2tz+1tt:+1t ——-1 2=1,...,n>-
Therefore, G, = m1(M,,) is the fundamental group of a 3-manifold. [J

We remark that the polyhedron P, can be considered as the natural
generalization of the fundamental polyhedron for the Fibonacci group
F(2,2n) constructed in [10]. Indeed, we will get the polyhedron from
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[10] if assume that vertices C; and B, coincide for all : = 1,...,n and
is this case faces (); and @} become triangular.

3. The split extension of the group G,

From the cyclic presentation (5) we see that the group G, has the
cyclic automorphism p : z; — z;4; of order n. This automorphism
corresponds to the symmetry of order n (also denoted by p) of the poly-
hedron P,, such that

p: T — T, Tz" - T,-/+1, Qi — Qit1, Q; — Q;.;.p
where indices are taken mod n.
In respect to the presentation (6) the automorphism p acts as the
following:
piti — tivl, @ — Qit1

Let us consider the split extension @n of group G, by the cyclic group
of automorphisms generated by p. The following demonstrates that the
group G, is interesting from the topological point of views.

Denote by 55(n) the orbifold with the 3-sphere as underlying space
and the knot 5, with index n as singular set.

THEOREM 2. For n > 2 the group @n is fundamental group of the
orbifold 53(n).

Proof. From the presentation (6) we get the following presentation
with notations t = £, and ¢ = ¢; :

Gn ={pt,q| (ptp)t 7 (pgp™t) ' =1,
@ (pgp )y 't=1, pP"=1)
=(pt,q| (t7 p) p(tT ) = pyg,
tlp=q¢'pgt, Pt =1).

Let us consider u = pgq, that is conjugate to p and so, " = 1. Then
q = p'p, and

t7hp = (7' wie(p W)t = p e wppT p.
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Thus we have a 2-generator presentation for the group G

Gn = (o,nlplptuptupup) = (e up upp o) i,
pr=1 = 1)
= (p,pulp(upt pou Yp) = (ptupu o) u,
pt=1, pt=1)

We recall that the group
{a, b|b(ablaba™'b) = (ab'aba"'b)a)

is the group of the 5,-knot, where a and b corresponding to Figure 2.

CC

FIiGURE 2. The knot 5,.

Therefore by [9], the group G, is the group of the orbifold 5,(n). O

THEOREM 3. For n > 2 the manifolds M, is the n-fold cyclic
branched covering of the 3-sphere branched over the knot 5,.

Proof. Let us consider the above automorphism p of the group G, =
m1(M,), and denote the corresponding homeomorphism of M, also by
p. Because the automorphism p of G, corresponds to the symmetry
of the polyhedron P,, we see that the %—piece II, of P,, pictured in
Figure 3 is the fundamental polyhedron for the quotient space M,/p
with G,, = 7™ (M, /p). The complex II, has faces NA,B,S, NA;B,S,
NA Ay, AlA3ByCy, A1B1C'L, and SB;C;B;. These faces are pairwise

equivalent under the group G, action.
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FIGURE 6.

FIGURE 7. FIGURE 8.
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After the identification of faces NA;B,S and NAy;B,S, we can re-
draw the remain four faces as the regions on the 2-sphere, In this case
we will get a Heegaard diagram, pictured in Figure 4. The axe of the
rotation p is pictures as a thick curve. It lies below the diagram, inside
the ball whose boundary is being identified along the two disc pairs de-
noted by A and B. Using the approach used in [12] for the figure-eight
knot, we can modify Figure 4 to Figure 8. Figure 5 is obtained from
Figure 4 by a simplification along C. Figure 6 is obtained from Figure 5
by a simplification along D. Figure 7 is obtained from Figure 6 by a
cancellation of handles. It is also a Heegaard diagram for the quotient
(i.e. §%). Cancelling the last part of handles we will get Figure 8. In
all these pictures the image of the axe of p is a thick curve. It is easy
to see by Reidemeister moves that the knot pictured in Figure 8 is the
59-knot.

Thus, we get that the image of the unknotted curve inside the 3-ball
which connects vertices N and S, that is the image of the axe of the
rotation p, forms the knot 5,. Moreover, in this case the image of the 3-
ball is the 3-ball again. Thus, the rotation p corresponds to the covering,
branched over the knot 5,. Therefore, the manifold M,, can be obtained
as the n-fold regular branched covering of the 3-sphere, branched over
the knot 5,. O

We recall [13], that the orbifold 52(n), that is denoted by (7/3)(n) in
[13], 1s hyperbolic for n > 3, and it is spherical for n = 2.

COROLLARY 1. The manifolds M, is hyperbolic for n > 3 , and M,
is the lens space L(7,3).

COROLLARY 2. The group G, is infinite for n > 3, and Gy = Z.

In virtue of the complete characterization of the arithmeticity of orb-
ifolds 55(n) (that is the characterization of the arithmeticity of groups

o~

G,) obtained in [13] we get the following property.

COROLLARY 3. The group G, is arithmetic if and only ifn = 3,4, 5, 6.
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4. The topological properties of the manifolds M,

In this section we will study the topological properties of manifolds
M, that gives a topological approach to the studying of cyclically-
presented groups G,. This studying is analogous to the topological
studying of Sieradski groups S(n) and Fibonacci groups F'(2,2n) given
in [3], [4], [12], and [21].

SN NS\
— N NN N —
\«««

FIGURE 9. The knot K,.

Firstly we define a series of knots. We recall that any knot can be
obtained as the closure of some braid [2]. let p and ¢ be coprime integers,
then by o7 /9 we denote the rational p/q—-tangle whose incoming arcs are
i-th and (¢ + 1)-th strings. For an integer n > 1 we define the n-periodic
knot K, as the closure of the rational 3-strings braid (o} a;/ ). We
recall that the fragment (o, os/%) was used by R. Fox and E. Artin [8]
(see also [1, p.48], [24, p.142]) for the construction of a wild 2-sphere.
The knots can be regarded as finite n-periodic fragments of the Fox-
Artin arc, so we will be say the knots K, to be Fox-Artin knots. The
diagram of the knot K4 is pictured in Figure 9.

Obviously, K, is a trivial knot. It is easy to check directly, that the
knot X, is equivalent, under the Reidemeister moves, to the 2-periodic

knot 5. The knot /3 is the non-alternating 3-periodic knot 949 (see [2,
p. 265]).

THEOREM 4. For n > 2 the manifold M, is the two-fold covering of
the 3-sphere branched over the Fox—Artin knot KC,.
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Proof. By theorem 3 the manifold M, is the n-cyclic branched cover-
ing of the 3-sphere §3, branched over the 2-periodic knot 55. To describe
M, as the 2-cyclic branched covering of S§*, branched over a n-periodic
knot, we will use the following construction which is analogously to [21]
and [3] where the Fibonacci groups and the Sieradski groups were topo-
logically studied.

From the presentation of the knot 5, in the form K, we see that
the orbifold 55(n) has symmetry of order 2 such that the axe of the
symmetry and the singular set of the orbifold are disjoint. Therefore,
the quotient space of 53(n) under this symmetry action is the orbifold
whose underlying space is S3, and whose singular set is the 2-component
link pictured in Figure 10 with branch indices 2 and n.

FIGURE 10. The link 72.

It is easy so see, that the singular set of the quotient orbifold is the
two-component link 72, that is the 2-bridge link and can be obtained
as the closure of the rational (14/3)~tangle. So, we denote the quotient
orbifold by 73(2,n). Thus, we have the following covering diagram

(7) M, 2 5,(n) 25 72(2,n)

and a sequence of normal subgroups

Gn = m(M,) 4 Gp = m(5x(n)) < Q2,n) = m(73(2,n)),
where [Q(2,n) : G, = 2 and |G : G| = n.
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According to the general properties of the 2-bridge knots and links
[2], [13], by [9], we get the following presentation of the orbifold group
Q(2,n) of the orbifold 72(2, n):

Q2,n) = {a, Blaw = wa, " = § = 1),
where
w = fafaf o fla fapag,
and generators o and 5 are loops around components of the singular set

of the orbifold 72(2, n) denoted in Figure 10 by n and 2, respectively.
Let us consider the group

2o ®Zy = (a]a” = 1) & (b|b = 1)
and the epimorphism
6 : Q2,n) — Z, D Z
defined by setting 8(a) = a and 6(3) = b.

By the construction of the 2-fold covering 55(n) — 72(2,7) the loop
B € Q(2,n) lifts to a trivial loop in G, and the loop o € w(2,n) lifts
to a loop in @n which generates a cyclic subgroup of order n. Thus, it
follows that

m(52(n)) = 07 ((a]a" = 1)) = 67" (Zn).

For the 2n-fold covering M, 2 72(2,n) both loops o and B from
(2, n) lift to trivial loops in G,, = m;(M,,), hence G,, = Ker§.

Let T', be the subgroup of ©(2,n) given by
L, = 074 | ¥ = 1) = 071 (Zy).

Then we get a sequence of normal subgroups

G, <« T, 2 Q2,n),

where |Q(2,n) : T} = n and |[', : G,| = 2. We recall, that the orbifold

72(2,n) is spherical for n = 2, and hyperbolic for n > 3. Hence the
group I';, acts by isometries on the universal covering X,,, that is the
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3-sphere S* for n = 2, and the hyperbolic space H? for n > 3. Thus we
get the orbifold X, /T, and the following covering diagram

(8) M, % X, /Tn % 72(2,n).

In this case the second covering is cyclic and it is branched over the

component with index n of the singular set of 72(2,n) in Figure 10.
But this component is the knot K; and is trivial. So, underlying space
of X, /T, is the 3-sphere. By the construction of the n-fold covering
X./Tn - T7%2,n) the loop a € Q(2,7n) lifts to a trivial loop in
Iy, and the loop 8 € §(2,n) lifts to a loop in I', which generates a
cyclic group of order 2. Because 7% is a 2-bridge link, its components
are equivalent and we can exchange branch indices of components in
Figure 10. Therefore, the singular set of X, /I', is a n-periodic knot
which can be obtained as the closure of the 3-string braid (o O'é/ A\n,
that is the knot X,. Because the index of singularity is equal to 2, we
denote K,(2) = X,, / Ty.

Comparing (7) and (8), we get that the following covering diagram is
commutative:

/\

52(n) Kn(2)

\/

71(2,n)

In particular, we have that M, is the 2-fold branched covering of the
3-sphere $? branched over the knot /C,, and theorem is proved. 0

We remark, that the particular case n = 3 of the above covering
diagram was proven in [23] by the direct consideration of the isometry
group action on the manifold Ms;.
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Now we will give another topological description of the manifolds
M,,. We recall the following fundamental Lickorish’s theorem [17], [26,
§91): Every closed, orientable, connected 8-manifold may be obtained by
surgery on a link in S

Bl Bg B5 B7

BQ B4 Bﬁ BS

FIGURE 11.

To find such representation for manifolds M,,, we will use the approach
of J. Montesinos [25]. We recall that in virtue of theorem 4, the manifold
M,, n > 2, can be obtained as the two-fold covering of the 3-sphere S3
branched over the n-periodic knot K,,, that is the closure of the 3-strings
braid (010;/2)".

We consider the neighborhoods By, . .., Bg which contain cross-points
of the diagram of the knot X4, pictured in Figure 11. Each B; is a 3-ball
such that 8B; N K4 consists of four points which are pairwise connected
by two arcs formed by B; N K4. Therefore, B; can be considered as a
Conway’s sphere [5] and, more exactly, B; is the 1-tangle if 7 is odd, and
B; is the 1/2-tangle if 7 is even.

Let B}, ¢ = 1,...,8, be trivial tangles such that B; = 0B; and the

four points on the boundary 0B, are pairwise connected by two arcs a;
and b; inside B]. Then the set

(e () U (Geeow)

is a closed unknotted curve C in S® which diagram is pictured in
Figure 12.
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FIGURE 12.

Following [25], we can redraw the curve C as a horizontal line. Let us
consider the two-fold coverings of S* branched over the knot K, and the
two-fold covering of S® branched over the curve C. In this case for each
i=1,...,8 the two-fold coverings of B; branched over B; N K4 and the
two-fold covering of B; branched over B; N C are solid torus.

Let us denote by L; a torus corresponding to B!. Using the approach
of [25], we see that toruses Li,...,Lg are torus neighborhoods of com-
ponents L1, ..., Lg of the link pictured in Figure 13, and the two-fold
covering of S® branched over the knot K4 can be obtained by surgeries
with parameters 1 and 1/2 on components Ly, ..., Lg of the link.

FIiGURreE 13.
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Therefore the manifold M, can be obtained by Dehn surgery on the
chain of circles L, U- - -U Lg, by doing 1-surgery on circles with odd num-
bers, and by doing 1/2-surgery on circles with even numbers. Applying
the same arguments for an arbitrary n > 2, we will get

THEOREM 5. A manifold M,,, n > 2, can be obtained by Dehn
surgery on the chain of circles Ly U -+ U Ly, by doing 1-surgery on
circles with odd numbers, and by doing 1/2—surgery on circles with even
numbers.

We recall that the presentation of the fundamental group of a compact
manifold obtained by Dehn surgery on the link L, U- - -U Ls, was studied
in [29]. In particular, for the manifolds M,, we get

COROLLARY 4. The group G, has the following presentation:
(9) X
Gn = {a1,..., a2, | Q2;+102j+2 = A25+3 anaz—jl.H = a’%j+2 ji=1...,m),
where indices are taken by mod n.

Let us consider the framed 2n-component link L; U - U Ly, with
coefficients as in the above theorem. Let us apply the twists about
n components with odd number (with labels 1), which are unknotted.
Then according to the Kirby-Rolfsen calculus on framed links [26, Ch. 9],
we will get the alternating link with 2n cross-points, that is a chain of n
unknotted components and all surgery coefficients are equal to (—3/2)
(see Figure 14 for the case n = 4).

~3/2

o

-3/2 ~3/2

L_J
-3/2
FiGURE 14.
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Let us denote by L, the alternating link consisting of n linked un-
knotted circles similar to Figure 14. Then from above considerations we
get

THEOREM 6. Forn > 2 the manifold M,, can be obtained by (—3/2)-
surgeries on components of the link L,,.

It is interesting to remark, that the Fibonaceci manifold uniformized
by Fibonacci groups F'(2, 2n) can be obtained by (—3)-surgeries on com-
ponents of the link £, [4].

Analogously, applying double-twists about n components with even
numbers (which have labels 1/2) of the link L; U- - -U Loy, we will get the
alternating link with 4n cross-points, which has n» unknotted components
and all surgery coefficients are equal to —3 (see Figure 15 for the case
n=4).

FIGURE 15.

Let us denote by L the alternating link consisting of n linked un-
knotted circles similar to Figure 15. Then from above considerations we
get

THEOREM 7. For n > 2 the manifold M, can be obtained by —3-
surgeries on components of the link L.

We recall that the smallest volume closed hyperbolic 3-manifold M,
was constructed independently by A. Fomenko and S. Matveev [7], and
by J. Weeks [30]. This manifolds was described in [14] as the result of
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(—3/2)-surgery on components of the link £3. Thus, from theorem 6 we
get

COROLLARY 5. The manifold Mj is the Fomenko—Matveev—Weeks
manifold M.

From theorem 3 and theorem 4 we get that the Fomenko—Matveev—
Weeks manifold M, can be obtained as the 3-fold cyclic covering of the
3-sphere branched over the knot 59, and as the 2-fold cyclic covering of
the 3-sphere branched over the knot 949 = K3, that was remarked in [22].
Moreover, the isometry group action on the manifold M, was studied in
[23]. The validity of theorem 7 for the manifold M3 = M; was remarked
in 18, p.80]

Another surgery description of the manifold M; = M; was given in
[14], where this manifold was obtained by surgeries on the components
of the Whitehead link with parameters (—5) and (—5/2).
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