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A NEW MINIMUM THEOREM
AND ITS APPLICATIONS

WonN Kyu KiM, DoNG IL RiM AND SUNG MO IM

ABSTRACT. In this paper we first prove a new minimum theorem
using the upper semicontinuity of minimizing functions, which is
comparable to Berge’s theorem. Next, as applications, we shall
prove the existence of equilibrium in generalized games and the
existence theorem of zeros.

1. Introduction

In 1959, Berge [2] first proved the following maximum theorem which
gives conditions under which a “maximizing correspondence” will be
closed:

Let £ and Y be topological spaces and let w : E xY — R be a
continuous real-valued function; let F : E — 2Y be a continuous and
compact valued correspondence; and, for each x € E, let M(z) := {y €
F(z) : u(z,y) > u(z,z) for all z € F(x)}. Then the correspondence
M s upper semicontinuous and non-empty compact valued.

Since then, this theorem, called Berge’s maximum theorem, has
become one of the most useful and powerful theorems in economics,
optimization theory, and game theory. And there have been many
generalizations and applications of Berge’s theorem, e.g. Walker [12],
Leininger [9], Tian-Zhou [11]. In their generalizations, continuity as-
sumptions on u and F have been relaxed; but the properties of conti-
nuity assumptions of u and F' are still needed in the different forms,
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e.g. graph-continuity in [9] and transfer-continuity in [11]. In this pa-
per, by using the upper semicontinuity of minimizing functions, we can
relax the continuity assumption of u by the continuity of the second
variable only when E and Y are topological vector spaces and u is a
bilinear functional. Till now there have been many kinds of maximum
theorems generalized and related to Berge’s theorem, so in this paper
we shall prove a minimum theorem, which is actually equivalent to the
maximum theorem.

The purpose of this paper is two-fold. First, we prove a new mini-
mum theorem using the upper semicontinuity of minimizing functions,
which is comparable to Berge’s theorem. Next, as applications, we
shall prove the existence of equilibrium in generalized games and the
existence theorem of zeros.

2. Preliminaries

Let A be a subset of a topological space X. We shall denote by
24 the family of all subsets of A, and by intx A the interior of A in
X. If Ais a subset of a vector space, we shall denote by co A the
convex hull of A. Let X,Y be topological spaces and T : X — 2¥ be
a correspondence. The correspondence T is said to be closed or have
closed graph if the graph of T (Graph(T) = {(z,y) € X xY 1z €
X,y € T(x)}) is closed in X x Y. A correspondence T : X — 2Y is
said to be (1) upper semicontinuous if for each z € X and each open
set V in Y with T(z) C V, there exists an open neighborhood U of z
in X such that T(y) C V for each y € U and (2) lower semicontinuous
if for each z € X and each open set V in Y with T(z) NV # 0, there
exists an open neighborhood U of z in X such that T(y) NV # @ for
each y € U, and (3) continuous if T is both upper semicontinuous and
lower semicontinuous.

Let ® denote either the real field or the complex field. Let E and
F be vector spaces over ®, (,): F x E — ® be a bilinear functional.
For each non-empty subset B of F and € > 0, let

U(B;e) ={f € F: sup [{f,z)| <e}.
z€EB

If E is a topological vector space, we let n(F, E') be the topology on F'
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generated by the family
{U(B;e) : B is a non-empty bounded subset of F and € > 0}

as a basis for the neighborhood system at 0. If F' possesses the n(F, E)-
topology, then I’ becomes a topological vector space.

We shall need the following lemmas.

LEMMA 1 [7]. Let X be a non-empty convex subset of a locally con-
vex Hausdorff topological vector space and D be a non-empty compact
subset of X. Let T : X — 2P be an upper semicontinuous correspon-
dence such that for each x € X, T(x) is a non-empty closed convex
subset of D. Then there exists a point & € D such that & € T(Z).

In a recent paper (4], Chang-Zhang proved the following very general
theorem on lower semicontinuity of the minimum funection, which is a
slight generalization of Lemma 2 in [8]:

LEMMA 2. Let F be a topological vector space over & and F be a
vector space over ® with the n(F, E)-topology. Let X be a non-empty
bounded subset of E and T : X — 2F be an upper semicontinuous
multimap such that each T'(x) is non-empty compact, and (,) : F x
E — & a bilinear functional such that for each f € F, z — (f,z) is
continuous.

Then for each y € E, the real-valued function g, : X — R, defined
by

gy(z) = inf Re(w,x—y), foreachze X,
weT(z)
is lower semicontinuous.

In many applications on the stability of minimization problems, we
shall need the continuity on the minimum or maximum functions, so
we do need the upper semicontinuity of g, on X in Lemma 2.

By replacing the upper semicontinuity of T with the lower semicon-
tinuity in Lemma 2, we first prove the upper semicontinuity of g, on
X as follows:
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LEMMA 3. Let E be a topological vector space over ® and F be a
vector space over ® with the n(F, E)-topology. Let X be a non-empty
bounded subset of E and T : X — 2F be a lower semicontinuous
multimap such that each T(z) is non-empty compact, and (,) : F x
E — & a bilinear functional such that for each f € F, x — (f,z) is
continuous.  Then for each y € E, the real-valued function g, : X —
R, defined by

gy(z) = ir%t;)Re(w,x-—y), for each z € X,
weT(x

is upper semicontinuous.

Proof. Let o € X and € > 0 be arbitrarily given. Then we shall
show that there exists an open neighborhood N(z¢) of zg such that

9y(x) < gy(xo) + € for each z € N{zo).

We first note that the function w — (w,z — y) is a continuous
function of w. In fact, for any given w’ and € > 0, the set V := {w €

F :sup |[(w—w',z—y)| < €} is an open neighborhood of w’ in F, and
zEX
for every w € V', we have

(w,z —y) — (W', —y)| < f(w —w',z —y)| <¢

and hence w — (w,z — y) is continuous. Since T(xp) is compact, we
can find wg € T(zp) such that

Re{wo,z0 —y) < inf Relw,zo—y)+
w€T(xo)

[NVX e

For each w € T'(zg), we let

Ny = {w’ € F:sup |(w —w,t)| < ~€—},
teQ 10
where @ = {# —y : 2z € X} is a bounded subset of E. Then N,,

is an n(F, E')-open neighborhood of w in F. Since T(xg) is compact
and T(zo) C Uyer(ze) Nuw there exists {wi,---,wa} C T(xo) such
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that T(zo) C Uj=; Nw,, and there exists some N, with1 < j <n
such that wy € N,,. Now we simply denote N,; by N(wp) as an
|

open neighborhood of wy. Then we have sup [(w — wj,t)| < f5 for
teq

every w € N(wp), and in particular, |{(wp — wj,zo — y)| < f5. For
each ¢ = 1,.-.,n,since 2 — (w;,z) is continuous, there exists an
open neighborhood N; of zg in X such that |(w;,z — 20)| < 5 for
each ¢ € N;. Now let Ny(zg) := [—; N; ; then Ny(zg) is an open
neighborhood of zg in X. For every € Ni(zo) and w € N(wyp), we
have

w, @ = 20)] < | — wy, 2 = )] + [(w = wj,y — a0} + |{aw;, s — o)

€ € 3¢

€
(*) EETRETRETINET

By using (*), we can obtain that for every x € Nj(zg) and w €
N(wp), Re{w,z—y) < Re{wo,zo —y) + 5. In fact, we have

Re{w,x — y) = Re{w,x — zg) + Re{w,zo — y)
= Re(w,z — xo) + Re(w — wj,z0 — y)
+ Re{w; — wo, To — y) + Re{wo, zo — y)

3e € €
< 1—6+-1—6+ 1—0+R6<w0,.’r0—y>
= ‘;— + Re(wo,xo - y).

Since T is lower semicontinuous at zgp and wg € T(xg) N N(wyp), there
exists an open neighborhood Na(zg) of zg such that T'(z) N N(wp) # 0
for every x € Na(zp). Finally we let N(zg) := Ni(zo) N No(xo);
then N(zp) is the desired open neighborhood of zg. In fact, for every
z € N(zp), we have
g9y(z) = wér%i;m) Re (w,z —y)
< Re{(w,xz —y) ( for every w € T(z) N N{wo))

< Re{wo,zo —y) + %

< inf Re(w,zo—vy)+

weT (o)

€ €
-+ 5 :gy(x0)+€,

N

so that g, is upper semicontinuous at xg. O
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REMARKS. (1) In Lemma 3, we do not need the strong continuity
assumption on the bilinear functional (, ) : F x E — &, but we only
need the continuity assumption on the second variable. Hence we can
obtain a general stability theorem as Theorem 3 in (1, p. 70] under the
weaker assumption of the continuity on f.

(2) Using Lemma 3, we can prove new generalized variational in-
equalities and quasi-variational inequalities by following the method
of Chang-Zhang in [4].

3. A minimum theorem and its applications

Combining Lemmas 2 and 3, we now prove the following general
minimum theorem:

THEOREM 1. Let E be a topological vector space over ® and F be a
vector space over & with the n(F, E)-topology. Let X be a non-empty
bounded subset of E and T : X — 2F be a continuous multimap such
that each T(x) is non-empty compact, and (,) : F x E — ® a bilinear
functional such that for each f € F, x — (f,z) is continuous.

Then for each y € E, the real-valued function g, : X — R, defined
by

gy(z) = inf Re(w,x—y), foreachze€ X,
weT(x)
is continuous, and the minimum correspondence M : X — 2F defined
by, for each = € X,

M(z) ={w e T(z): Re{w,z —y) = w’ier%f(z)Re (w',z —y)}

is upper semicontinuous and non-empty compact valued.

Proof. The first assertion follows immediately from Lemma 2 and
Lemma 3. To prove the upper semicontinuity of M, we write M(z) =
T(z) N S(z), for each z € X, where S(z) = {w € F: Re(w,z —y) =

ix;f( )Re (w',z—y)}. Since the function w — (w,z—y) is continuous
w'eT(x

and T'(z) is a non-empty compact subset of F', each S(z) is non-empty
closed and so M(z) is non-empty compact. We first show that the
graph of S is closed in X x F. Let (z4,Wa)acr C Graph(S) be a net
converging to (Z,w) in X x F. Let ¢ > 0 be arbitrarily given. Since
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gy : X — R is continuous, there exists A\; € I' such that gy(xa) <
gy(Z) + § for every o > Ay, iee,,

inf Re(w,zq—y) < inf Re(w,Z—
odBl B3 — ) S T Re (w2 =) +

Wl m

Since F' is equipped with n(F, E)-topology, for an open neighborhood
UX,5):={feF:sup (f,Lz—y)| <5}of0in F,w+U(X,3) is
zeX

an open neighborhood of w0 in F'; and we simply denote it by N(w) as
an open neighborhood of @ in F. Since (wq)aer converges to @ and
w — (w,z—y) is a continuous function on w, for an open neighborhood
N(w) of @, we can find Mg € I such that for each & > A2, wq € N(w),
ie.,

sup [{(we — W,z — )| < < for each a > As.

zeX 3
Also since z — (f, z) is a continuous function on z, we can find A3 € T’
such that for each @ > A3, [(@,2o—Z)| < § for each @ > A3. There-
fore we finally have A € T such that A > ); for each ¢ = 1,2,3. Then,
for each v > )\, we have

0 > Re(wq,Ta —y) — weiTn(fm )Re (w,zoq — y)

= Re(wy — W, To — y) + Re(w,zq — y) — 17111(f )Re (w,zq — y)
weTl(ra

= Re(wy — W, To —Y) + Re (W, 2, — )
+Re(d,—y) — inf Re(w,zq—
(W, Z — y) wolf R (w,Ta — Y)
€ €

€
-+ Rel®.® — 1) — i F— ) — —
> 3 3+ e(w, T — y) wér%f(i)Re(w,m Y) 3

so that we have

Re(w,Z —y) — wér%f(i)Re (W, —y) <e.

Since € > 0 is arbitrary, we have Re(w,Z — y) — 1{}f( )Re (w,z —
wel(z

y) < 0, which implies (Z,w) € Graph(S). Therefore the graph of S

is closed in X x F. Hence, by Proposition 2 in [1, p. 73|, M is upper

semicontinuous. 0
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REMARK 2. It should be noted that Theorem 1 is comparable to
Berge’s theorem in [2]. In fact, in Berge's theorem we must need the
continuity of v on F' x E, however the choice sets E and F' are general
topological spaces and u may not be a bilinear functional.

As an application of Theorem 1, we can obtain a new equilibrium
existence theorem. We first recall some terminologies of the equilibrium
theory in mathematical economics. Let I be a finite or an infinite set
of agents. Each agent ¢ chooses a strategy x; in the choice set X; of a
topological vector space. Denote by X the (Cartesian) product IT;c ;1 X
and X _; the product Il;cp ;3 X;. Denote by z_; and =z = (z_;, ;)
the generic elements of X _; and X, respectively. Each agent ¢ has a
payoff (utility) function u; : X — RU{—o00}. Given z_; (the strategies
of others), the choice of the i—th agent is restricted to a non-empty
set Fi(z_;) C X, the feasible strategy set; the i—th agent chooses
x; € Fi(x_;) so as to minimize u(z_;,x;) over F;(z_;).

DEFINITION. A generalized game I' = (X, F;,u;)ics is defined as a
family of ordered triples (X, Fj,u;). An equilibrium for T' is a point
Z=(%_;,2;) € X such that for each i € I,

(i) I; € Fi(f}_i), and

(i) w(®-:, &) = infy,e a0 wil@-i, 93)-

If Fi(z_;) = X, for each ¢ € I, then the generalized game I" reduces
to the conventional game I' = (X;, u;) and the equilibrium is called a
Nash equilibrium.

In 1952, Debreu (5] first proved an equilibrium existence of the gen-
eralized game, and since then, the classical Debreu theorem on con-
tractible polyhedron choice set has been generalized in many directions,
e.g., see [1,3].

Now we apply Theorem 1 to prove an existence theorem on equi-
libria in generalized games where the payoff functions u; are neither
continuous nor jointly continuous:

THEOREM 2. Let I be a finite or an infinite set of agents. For each
1 € I, X; is a non-empty bounded convex subset in a locally convex
Hausdorff topological vector space and D; be a non-empty compact
subset of X;. Let u;: X_; x X; — RU{—00} be a bilinear functional
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and equip X_; with the n{X_;, X;)-topology generated by the bilinear
functional u;.  Furthermore, we assume that
(1) F; : X_; — 2P+ is a continuous correspondence such that for
eachz_; € X_;, Fi(z_;) is a non-empty compact convex subset of D;,
(2) for each fixed z_; € X_;, x; — u;(2_;,x;) is continuous.

Then the generalized game I' = (X, F;,u;);cs has an equilibrium.

Proof. For each i € I, we define the minimizing correspondence
Mi : X_i - 2Di by,

Mi(z_;) :={y; € Fi(z_;) : ui(z_;,y;) = inf (Z-i,2:)},
(z_s) =={y (T_s) : us(z_s,9) Ziégl(m_i)u(x z:)}

for each z_; € X_;.

Since the bilinear functional u; satisfies the assumption of Theorem 1,
so we know that M; is upper semicontinuous and each M;(z_;) is non-
empty compact. Furthermore, M;(z_;) is convex for each z_; € X_;.
In fact, for any y;, y; € M;(z_;) and ¢t € [0, 1],

ui(z_s,ty; + (1 —t)y;)
=t-ui(z_sys) + (1 —t) - ui(z—s,9;)

=t inf wi(z_sz)+(1—1) inf  wiz_s 2
zie}?(x_i)ul(x i) +(1-1) ziezl«*?(z_,-)uz(x ir%3)

= inf ui(:c_i,zi),
2z, €F;(x—y)

so that ty; + (1 — t)y; € M;(z_;). Hence M;(z_;) is convex. We now
define the correspondence M : X — 2P by

M(z) :=1LiefM;(z_;), foreachz = (z_;,x;) € X,

where D = Il;c;D; is a non-empty compact subset of X. Then, by
Lemma 3 in [6], we know that the correspondence M is also upper
semicontinuous such that each M(z) is non-empty compact convex.
Therefore, by Lemma 1, there exists & € M(Z). Thus Z is an equilib-
rium for the generalized game T', i.e., for each i € I, %; € Fy(Z_;) and
ui(Z_s, ) <ui(z_y,2) forall z; € Fi(z_;). O
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REMARK. Theorem 2 is different from Theorem 5 in [11] in the
following aspects:

(1) X; need not be compact but the feasible strategy set F;(z;) is
contained in a compact set D;; however we do need the strong conti-
nuity assumption on Fj.

(2) The continuity assumption on u;(z_;,z;) is quite different. In
fact, in Theorem 2, we do not need the continuity assumption of u; on
X_; x X;, and even more do not need the continuity assumption on the
first variable z_;. We do need the weaker assumption of the continuity
of the second variable z; only; but in Theorem 5 in [8], they need some
kind of jointly continuity assumption on u;.

Now let A, = {z = (21, ,Tn41) @ 2 20, i =1,--- ,n+
1, and Y77 2, = 1} be a closed simplex in R**! and S, = {z €
A, : z;>0,i=1,---,n+ 1} be the standard n-simplex. Define
the partial order in R"*! as follows: when = = (1, -+ ,ZTn41), ¥ =
(W1, yYn+1) € R we define z < y if z; < y; for every i =
l,---,nm+l;andx <Xy if z; <y, foreveryt=1,--- ,n+ 1. And we
denote the standard dot product of z,y in R**1 by z -y, and denote
the origin (0,---,0) in R**! by O.

Finally, we prove the following existence theorem of zeros:

THEOREM 3. Let S be a non-empty open convex subset of S, and
f: 8 — R™! be continuous such that

(*) p-f(p) <O foreverype S, and p- f(p) =0 whenever f(p) <0.

Let p € S be arbitrarily fixed and K; = {z € S :p- f(z) <0}. Ifwe
assume that inf,ca \g 2-f(x) <0 forevery x with inf.ck, 2-f(z) <
0, then the set {p € S : f(p) = O} of zeros is non-empty compact.

Proof. Since f is continuous, the set K; is non-empty closed. Then
we can find a non-empty compact convex set K such that K; C
intAnK CcKcCS.

Now we define a minimum correspondence ¢ : K — 2K by

o) ={yeK: y- f(z) =21é1[f{ z- f(z)}, foreach z e K.

Then, by Theorem 1, ¢ is upper semicontinuous and it is easy to see
that each ¢(z) is non-empty compact convex. Therefore, by Kakutani’s
fixed point theorem, there exists a point & € K such that & € ¢(),
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ie, Z-f(z)=inf,cx z- f(£). By the assumption (x), we have 0 >
& -f(2) = inf.ex 2 f(Z). Since K; C K, inf,ck, 2 f(Z) <0, and so by
the assumption, inf,ca \s z- f(2) < 0. For any given z € S\ K, we can
find z; € K, z2 € A, \ S and A € (0,1) such that z = Azy + (1 — A)za.
Therefore we have
z- f(2) = (Az1 + (1 = N)z2) - f(2)
= Azy - f(Z) + (1= A)za- f(2) <0,

so that inf,c g\ z- f(£) <0, and hence inf,ca, 2- f(&) < 0. Therefore,
by Proposition 2.14 in [3], we have f(£) < 0. By the assumption, we
have & - f(£) = 0. Since & € S, we must have f(Z) = O. O

REMARK. The assumption (*) in Theorem 3 is weaker than strong
Walras’ law ( p- f(p) = 0 for every p € S ), and stronger than weak
Walras’ law ( p- f(p) <0 for every pe€ S ).

The following example can be suitable for Theorem 3 and the strong
Walras’ law is not satisfied, so that the previous many theorems on the
market equilibrium using the strong Walras’ law, e.g., Theorems 8.16
and 18.13 in [3] due to Neuefeind and Grandmont, respectively, can
not be applied:

EXAMPLE. Let A; be the compact convex simplex in R? and § =

{(r,0) :rcos(8 — §) = %, £ <0 < 37} be an open convex subset of

Ai. Let f: 8 — R? be a continuous excess demand mapping defined
by

(6— G 045+ 56— 7D, it T <6<,

Fr0) = 1 272" g 8 4
’ 6=Tr o-T Loy, # Top 3T
g7 T TP T By 8"

Then it is easy to see that f is a continuous mapping such that f(r,8) —
O as 0 — 7, and it is noted that for every (r,6) € S, (r,0)-f(r,0) <0
since f is a mapping of a kind of rotation of more than 5. For any
fixed pe S, inf.ck, 2z f(z) <0 for every z € S, and also we know
that inf,ca,\s z- f(z) <0 for every =z € S. Therefore we can show
that all the hypotheses of Theorem 3 are satisfied, so that we can find

a zero p* = (—\}—z,ﬁ-) € S of f, ie, f(p*) = O. Finally, it should be

noted that (% cos™t I, ?—g)f(% cos™! L 37) < 0, so that the strong
Walras’ law does not hold.
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