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GENERALIZED WHITE NOISE FUNCTIONALS ON
CLASSICAL WIENER SPACE

YuH-JIA LEE

ABSTRACT. In this note we reformulate the white noise calculus
on the classical Wiener space (C’,C). It is shown that most of the
examples and operators can be redefined on C without difficulties
except the Hida derivative. To overcome the difficulty, we find that
it is sufficient to replace C by L, [0, 1] and reformulate the white noise
on the modified abstract Wiener space (C’, L, {0, 1]). The generalized
white noise functionals are then defined and studied through their
linear functional forms. For applications, we reprove the Ito formula
and give the existence theorem of one-side stochastic integrals with
anticipating integrands.

1. Introduction

The theory of generalized functions of infinite variables has been for-
mulated in terms of Malliavin calculus and Hida calculus. The for-
mer, introduced by Malliavin[20,22], studies the calculus of generalized
Wiener functionals and their applications on the classical Wiener space
(C, B(C),w) while the later, also known as the white noise analysis initi-
ated by T. Hida[6], investigates the calculus of generalized white noise
functionals on the white noise space (S', B(S'), i) (see also (7, 17}), where
C denotes the space of continuous functions which are defined on {0, 1]
and vanish at 0 and w the Wiener measure on C; &’ denotes the space
of tempered distributions and p the standard Gaussian measure on &'
and where B(C) and B(S’) denote respectively the Borel field of C and
the Borel field of §’. The connection between the two theory remains an
interesting problem to be further studied. In this paper we are devoted
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to a reformulation of white noise analysis on the classical Wiener space
and it is believed that the results might provide a major step toward the
investigation on the connection between these two theories.

The basic machinery in white noise analysis is the so called S-transform
which is used to define and study the generalized white noise functional
(GWNF, for abbrev.). More precisely, the S-transform transforms a
GWNF F in a unique way to a U-functional Ur(€) defined on the
Schwartz space S. Then the GWNF F is defined by S~'Ur. In our
previous paper (19|, it was shown that the GWNF’s could be also de-
fined and studied in terms of their linear functional forms without using
inverse S-transform and, under this framework, the Hida calculus was re-
formulated on an arbitrary abstract Wiener space . As C is also regarded
as an abstract Wiener space which has the space C’ of Cameron-Martin
functions as its reproducing kernel Hilbert space, it is desirable to re-
formulate Hida calculus on C. It follows from the results in [19] that,
without too much difficulties, most of the examples of GWNF’s and their
calculus can be redefined, the only difficulty that we have encountered so
far is that the Hida derivative §; can not be defined for all GWNF’s. No-
tice that the Hida derivative is formally defined by 8,=D,,,, the Frechét
derivative in the direction of 1} 1), we show that this difficulty can be over-
came if the abstract Wiener pair (C',C) is replaced by the new abstract
Wiener pair (C’, L,[0, 1]) and choose the space £ of mean of exponential
type entire functions as test functionals defined on the complexification
of L»[0,1]. Then the theory of white noise analysis can be carried over
here to formulate on the classical Wiener space.

2. Representation of Brownian motion and white noise
Let C be the collection of real-valued continuous functions f which is

defined on [0,1] and satisfies f(0) = 0 and C’ the subclass of C consisting
of absolutely continuous functions f whose derivative f satisfies

/1 |7 (x)|*dz < oo.
0

C' is a Hilbert space with norm | - | and inner product < -, - >; defined
by
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(21) < frg>= / #()i(z)dz,

members of which are also called Cameron-Martin functions. It is well-
known that (C',C) forms an abstract Wiener space and the calculus
on C is performed with respect to the Wiener measure w. The prob-
ability space (C,B(C), w) then serves as the underlying space in our
investigations. The dual C* of C, identified as a subspace of C’, may be
characterized as follows:

Facr 2.1 [23]. C*={f e (' : f is a right continuous function of
bounded variation and f(1) = 0}.

and, under this identification,the (C,C*) pairing (-,-) is then given by

(f,9) = - / £(t)dg(),

for f e Cand g € C*. If f € C' and g € C*, then we have (f, g)=< f,g >,
For any g € C*, (-,g) defines a random variable on C with mean zero
and variance |g],’=< g,9 >,. In other words, E[(:, 9)*]=|g],>. It follows
from this isometry that if ¢ € C’ and if (g,) is a sequence in C* such
that |g — gnlo — 0 as n — oo, we define the function < -, g >, as the
L%(w)-limit of (-, g,), then < -, g >, is a random variable with mean zero
and variance |g|,”.

FAcT 2.2. For each t € [0,1], define b,(s) = min(¢,s), then the
Brownian motion {B(t) : t € {0, 1]} can be represented by

for every x € C.

In the remaining of this section, we shall define the white noise { W (t)}
as a generalized functional. Formally, the white noise is understood as
the “time derivative” of Brownian motion. In notation we write W(t) =
B(t), where B(t,z) = &(t). Let ¢ be a sufficient smooth function. Then

formally we have
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Lo B(t,z)p(z)w(dz)
(2.3) = lim c(x,é(bt+e—bt))so<w>w(dx>

= 1 (e — b), D(w £)(0).

Notice that %(bﬁ.e — b;) converges in Ly to by = 15 as € — 0. The
limit (2.3) tends formally to (h:, D(w * ¢)(0)), where (,-) denotes the
(L,, L,") pairing. This suggests that the definition of white noise should
be defined according to the following rule:

(2.4) B(t)(y) = (he, D(w * #)(0)).
Notice that h; € L,[0,1] \ C, the definition of white noise (2.4) does not

make sense in general if ¢ is merely a smooth function defined on C.
In order to define the white noise as a generalized functional, the test
functionals should have smooth extensions to L, = L,[0,1]. This leads
us to consider the “new” abstract Wiener pair (C’,L,) in place of the
classical Wiener pair (C',C). The Wiener measure w is then extended
to a measure, still denoted by w, on the Borel field B(L,) naturally by
setting w(E) = w(E(\C) for all E € B(L,). Observe that the identity
mapping is a continuous embedding from C into L,, one can identify the
dual space L} of L, as a subspace of C* in the sense that, for y € L;
and z € C, then (z,y) = (z,y), where (-,-) is the pairing of L,-L}.
Furthermore, L} can be characterized as follows:

Facr 2.3. L] ={f eC*": f is absolutely continuous with f € L, and
£(0) = f(1) = 0}.

Under the above identification, we have

1 .
(2.5) (z, f) = — / 2(u) Fu)du,

for z € L, and f € L, where (:,-) denotes the (L,,L;) pairing. The
random variable < -,k > is defined similarly for £ € C’ when the AWS
(C’, L,) is considered.

To conclude this section, we summary the above results into a Lemma
for future applications.
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LEMMA 2.4. (a) If we identify the dual space of C' by itself, then C*
and L are identified as subspaces of C' according to Fact 2.1 and Fact
2.3. Moreover, we have

L:cCrclC=CcCclL,
where the inclusive relation are in fact densely embeddings.
(b) The Brownian motion is represented by
B(t,z) = (z,b),
for all z € C or by
B(t,z) =< z,b, >,
for almost all x € Ls.
(c) For z € C' and y € L}, the following identity holds:
(z,¥) = (z,y) =< 2,y >,
(d) The definition of white noise as a linear functional is given by
B(t)(y) = (hs, D(w * 9)(0)),
where h; = 13 and ¢ is a test functional, to be specified in the next
section.
NOTATIONS.
L(X,Y): the bounded linear operators from the Banach space X into
the Banach space Y.
L™(X): the continuous n-linear transform from X” = X x- - - x X (n-fold)
into C.
Txy...zp:=T(zy,...,2,)(T € LYX).
Tz":=Tz...z (n-times).

3. Test and generalized functionals

Let (H, B) be a fixed but arbitrary abstract Wiener space (AWS, for
abbrev.) Denote the norm of B by || - ||, Let £(B) be the class of
functions f defined on B which satisfies the following condition:

(E-1) f has an analytic extension £ to the complexification B, such that
f(2)| < ¢fexp(c;||2||;) for some constants ¢y, ¢; depending on f, where
f FiI%lls fr Cf

Izll, = (l2ll2 + [ly]2)? for 2 = = + iy (z,y € B).
For m=1,2,3,... and for f € £(B) define the norms
I1£llm = sup.ep, {1 £(2)le s}
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and let £™(B) be the class {f € &(B) : ||f||lm < oo}. Then {(£™(B),

[I]l»)} forms an increasing sequence of Banach spaces such that U E™(B)
m=1
= &(B). Endow £(B) with the inductive topology induced by £™(B),
&(B) becomes a locally convex topological algebra.
ProPoOSITION 3.1 [19]. (a) £(B) is Bornological.
(b) If f € E™(B) so s the function g(z) = D"f(x)y1...yn forys, ..., 4% €
B. Moreover,

(3.1) lgltm < 1FH™ explm(iiyally + - -+ liynll).

(c) If f € E(B), then fi(z) = Eﬁzo(l/n!)D”f(O)x" converges to f in
E(B).

(d) Let Af(z):= trace[D*f(z)] and N f(z) = —Af(z) + (z, Df(z)).
Then the mappings f — Af and f — N f are continuous on £(B).

(e) For any f € E(B) the Wiener-It6 decomposition of f enjoys the
following representation:

o) =3 /B D # £)(0) (e + i) (dy),

where the sum converges in £(B).
Now we turn to the AWS (C’,C) and the AWS (C', L,). For simplicity,
let ’s denote the C-norm and the L,-norm by || - || and || ||,, respectively.

DEFINITION 3.2. (a) Let £ be the collection of functions f which is
defined on C and there exist a function g € £(L2) such that f(z) = g(z)
forall z € C.

(b) Set £, = £(C).

Clearly £ C &, and the injection from & into & is continuous so that
their dual spaces enjoy the following relation:

(3.2) £ &

Both £ and £, will serve as the test functionals in our investigations
and members of their dual spaces will be called generalized white noise
functionals (GWNF, for abbrev.). For notational convenience, we shall
use “(-,-))” to denote the pairing for both £* — £ and £ — &,.

The space of GWNF’s will be endowed with weak*-topology. Thus a
sequence {F},} of GWNF’s is said to converge to a GWNF F if (F},, ¢)) —
(F,) forallpef.
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4. Examples of GWNF

Unlike Hida’s original approach, examples of GWNF’s given in this
section will be defined in their linear functional form instead of their
S-transforms, for more details we refer the reader to [7-13,17,19].

EXAMPLE 4.1. (a) Suppose that f is a measurable function that
satisfies the following condition:

(4.1a) /|f(x)]e’"”z”w(da:) < 0o
c
for allm =1,2,3,---. Then f defines a GWNF f in £’ given by
(415) (.o = [ faolopuds),
for p € &,.

(b) Suppose that f is function that satisfies the condition (4.1a) with the
C-norm ||z|| being replaced by the L,-norm ||z||, for all m =1,2,3,---.
Then f generates a GWNF in £* defined also by (4.1b) for ¢ € £. In
particular, L € &, for p > 1.

EXAMPLE 4.2. (a) Suppose that p is a Borel measure that satisfies
the following condition:

(4.2a) /e’”“z“,u(dm) < 00
c
for all m = 1,2,3,---. Then p generates a GWNF p in £* given by
(420) (fred = [ ol@n(da),
for p € &,.

(b) Suppose that p is a measure that satisfies the condition (4.1a) with
the C-norm ||z| replaced by the L,-norm ||z, for all m = 1,2,3,....
Then p generates a GWNF in £* given by the same form as (4.2b) for
¢ € . For example, w and O;(z,dy) = w(dy — e~'z) (the transition
measure of C or L,-valued Ornstein-Uhlenbeck process) are GWNF’s in
&

" EXAMPLE 4.3. First define

) (zy) fyecC
y(x)_{(:n,y) ifyelL;.
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Clearly ge &, ifyeC* and je £ ify € L.
If y € C', we define §j(z) =< z,y >,, and, in this case, § is defined
only a.e.(w) for z € L,.

One naturally ask what if y € C (or y € L,). Suppose that y € C. We
choose a sequence {y,} C C* such that ||y, —y|| — 0 and for any ¢ € £,
since D(w * ¢)(0) € C*, we have

(T, 2 = Jo(z,yn)p(x)w(dz)
= (yn, D(w * ¢)(0))
— (y, D(w * )(0))

as n — oo. This leads to the following definition:

(4.3a) (9, o) = (y, D(w * ©)(0)),

for all p € &,.
If y € L; then the similar arguments yield the following definition:

(4.3b) (@, @) = (y, D(w * 9)(0)),

where ¢ € £.

As a consequence of (4.3b), the white noise B(t) now may be defined
rigorously by

(4.3¢) (B(2), o)) = (hs, D(w * 9)(0)),
for all ¢ € £. Equivalently, B(t) = hy. Tt follows from (4.3c) that
B(t) € &*.

EXAMPLE 4.4 (construction of a GWNF by additive renormaliza-
tion). Suppose that ki, ks, ..., k, are elements of L}. Then [}_, k;(z) €
€ C & . Let p € £ and apply integration by parts formula[13], we obtain

k@ v@) = [T[EEeu)

= /CQn(a:)go(x)w(dx) + D™w * ¢)(0)ky, . . ., kn,
(4.40) = {(@n(2), p(2))) + D" (w * 9)(0)ky, - -, K,

where Qn(z) = [[j_1 ki(2) + [ ITj= ki(z + sy)w(dy). If we let k; — y;
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in L for all j, then (4.4a) does not tend to a limit in general. Now,
subtracts the first term of (4.4a) from both sides of the above identity,
one obtains

(4.4b) Hk — Qu(z), 0(x)) = D™(w * ©)(0)ky, . ..., ky.

The last term does tend to D™(w * )(0)ys, ..., y, wWhich determines a
GWNF {: §192 ... n :} defined as follows:

(4.4¢) (: da- - -Gn 0 = D" (w* 0)(0)tn; - - s Y-

This GWNF is also called the (additive) renormalization of g%z . . . Jn.

In particulr, for any positive times {t;,1, .. ,,} C [0, 1], not neces-
sarily distinct, the renormalization of B(t;)B (tg) B(t,) is given by

(4.4d)  (: B(t)B(t2) ... B(ty) 3, @) = D™w * )(0)hy by, . . - by
It is easy to see that : B(t;)B(ty) ... B(t,) : € £*.

ExXAMPLE 4.5. If T € L£(C’,(’) is symmetric, then the function <
Tz,x >, does not make sense for z € L,, however, the renormalization
< Tz,z >, makes sense and defines a GWNF given by

(4.5a) (< Tz, x >,:, ) = tracee[TD*(w * ©)(0)].

Formally :< T'z,xz >,:=< Tz,z > —traceo[T] (neither < Tz, z >, nor
traceq [T'] exits, but their difference make sense).
Apply (4.5a) with T' = I, we have

(4.55) ( /0 B()%dt -, ) = tracea [D*(w * ©)(0)].

'EXAMPLE 4.6 (construction of GWNF by multicative renormaliza-

tion). Suppose that h € C' and « is a complex number. Then exp(ah) €
L*(w) and

(4.6a) /Ce“;’(‘”)go(m)w(dx) = e2 My x o(ah).

Multiply both sides of (4.6a) by exp(—3a?|h|?), one obtains

(4.6b) (e MR eleh) oY = w % p(ah).



622 Yuh-Jia Lee

Since w * p(ay) exists for any y € L,, and the mapping ¢ — w * p(ay)
is a continuous functional on &, (4.6b) suggest that we define

(4.6¢c) {(: exp(ag) :, ) = w * p(ay),
forallp € £. Then: exp(af) :€ £*. Formally, we may write : exp(ag) : =
exp(—30?|y|?) exp(ag). Thus we call : exp(af) : a multiplicative renor-
malization of exp(ay).

Apply (4.6¢) with y = h;, we have

(4.6d) (- exp(aB(t)) 1, o)) = w  p(ahy).

EXAMPLE 4.7. Let a # 1 be a complex number. The multiplicative
renormalization of exp{$ fol B (t)2dt} defines a GWNF given by

a1 (ewly [ BO@e) = [ol - oy toua)

EXAMPLE 4.8 (Donsker’s delta function). Donsker’s delta function
may be formally represented by 4,(B(t)). As a GWNF, it is defined as
follows:

{(0u(B(2), p)) = 1 /_00 exp(—ius — %szt)w * p(isby)ds.

21 J_w
For more examples of GWNE’s, we refer the reader to [7-13,17,19).

5. Calculus of GWNF’s

Multiplication by functions

Let ¢ is a fixed but arbitrary function in £ (resp. &,). Then the
mapping ¢ — ¢ is continuous on £ (resp. &). This fact leads to the
following

DEFINITION 5.1. Let F € £ and ¢ € £. Define

(WF, o) = (Fy, ) = (F,9p)).
Then ¢ F € £*.
On the other hand, if F € £ and ¢ € &, then we define

(WF, o) = (F,ve)).
The later implies that Y F € £.



Generalized white noise functionals on classical Wiener space 623

Translation
DEFINITION 5.2. Let F € £* and z € C* . Then we define

(rF o) = (F, 1o,
where T,¢(z) = p(z — 2).

Differentiation

DEFINITION 5.3. Let F' € &*.
(a) For any z € L,, define

(D2F, o)) == (F, Do),
for all ¢ € £, where D;(y) = (z, Do(y)) = Do(y)z (z,y € L,).
(b) For any 2 € L and for any ¢ € £, define

(D:F, @) = (F, Z¢)) — (F, D)),
for all p € &.

When F' € £*,z € C and z € C*, the differential operators D} and D,
are defined similarly.

PROPOSITION 5.4. Let F' € £*(resp. &).
(a) If z € L,(resp. C), D;F € &E*(resp. £}).
(b) If z € L(resp. C*), then D,F € £*(resp. £) and we have
ZF = D,F + D;F.

Proof. The proof follows immediately from Proposition 3.1. |

DEFINITION 5.5. (a) Let 0; = Dj,. (Recall that h; = 1 5).)
(b) For F € £* and for ¢ € £, define

(O F, ) = (F, 00
PROPOSITION 5.6. (a) For z € L} and = € C/, we have
1
3z) = / i()3(t)dt.
0

(b) For z € L and for ¢ € £, we have

(5.1) D.p(z) = /0 Bup(x)2(t)dt (z € C).
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(c) For z € L} and for ¢ € &, we have

(5.2) Do(z) = /0 O p(z)2(t)dt (z € C).

(d) For ¢ € &, then we have

(5.3) B(t)p =0wp + O; .

REMARK 5.7. In Proposition 5.5, if the test functional ¢ is replaced
a GWNF F € &%, then (5.2) and (5.3) hold only symbolically. It can
be interpreted in the following way: Suppose that @ € L(L},£*). Then

one can realize Q(t) as an £*-valued function in ¢-variable and interpret
the formal £*-valued integral

(5.4) - [ ezt = Q) e 1.

For example, the derivative DF of F is an element in L(L:,£*) if we
define DF(z) := D, F for z € L. Then DF (t) is realized as an £*-valued
generalized function such that

1
(5.50) QF:—/IMWW@M
0
The identity (5.5a) may rewritten as
1
(5.5b) ‘apzjzﬂuﬁ@a
0

Apply (5.5b) with z = h; formally, we have 0,F = ljF(t).
ExXAMPLE 5.8. (a) For any t, s € [0, 1], we have
(5.6a) 3, B(s) = 8,(t).

Identity (5.6a) is in fact a symbolic representation of the following iden-
tity:

(5.6b) D,B(s) = 3(s).

Since B(s,z) =< =z, hs >,, we have D,B(s,z) =< h,, 2z >,= 2(s). This
verifies (5.6b) and hence proves (5.6a)
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(b) Let f € L,. Then fo ) du : is a GWNF which can also
be represented by < Tz, x >0 : where T is a symmetric bounded linear
operator of the form Tz(t fo . Then we have

(5.7) ( / Flw)B(w) du ) = 2f(t)B(t).

The proof follows immediately from the fact that D,(: (T'z, z),) = 2(T'z, 2),.
(c) For any ¢, s € [0, 1], we have
(5.8) 8y B(s)" : = nd,(t): B(s)

Rewrite : B(s)" :=: k7 :. It follow that D, : % : = n < hy, 2 >,: B!
which, in turns, implies (5.8).

(d) For ty,t9,%3,...,t, we have
805 ... 051 = B(t1)B(ty) ... B(ty) :
(see also [7,17,19]).
(e) For any t,s € [0, 1],
dt: B(s)" : =: B(s)"B(t) :

n—1

(see also [7,17,19]).

DEFINITION 5.9. Let I € £*. Then we define
() (NF, ) =(F,Np) forallpecé;
(b) (A*F,p) = (F,Ayp) forall pef.

PRroPosSITION 5.10 [7,17,19].

(a) For ¢ € £, we have Ap = fol O2pdt.

(b) For F € £*, we have NF = [ 3;8,Fdt and A*F = [} 8;9; Fdt.
Fourier transform

LEMMA 5.11 [19]. For any ¢ € £ and any pair of complex number
«a and 3, define

Fogoly) / f(az + By)w(da).

Then F, 3€ C € and Fo €, C &,. Moreover, F, g is continuous on £ and
on &,.
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DEFINITION 5.12. For a GWNF G € £*, define the Fourier transform
FG by

(FG, ) = (F, F1-i0),

for all ¢ € £. The inverse Fourier transform is given by

(FG, o) = (G, Fripd,
for all p € €.

It follows from the Lemma 5.11 that the Fourier transform is well-
defined and is continuous on £*. It can be shown that the Fourier trans-
form generalizes the finite dimensional Fourier transform defined in the
following form:

Fip(y) = (V2m)™ . P(x) exp(—i < y,z >)dz.

An another definition of Fourier transform was given by Kuo[17]. It
is worth to remark that, unlike the finite dimensional case, the Fourier
transform send “good” whit noise functional to “bad” one. This might
be the reason why the Fourier transform does not play a significant role
in white noise calculus so far as we know, and for this reason we omit
the discussions of properties of Fourier transform in this paper. For
interested reader we refer to [17,19].

Conditional expectation

Let B, denote the o-field generates by {B(t;) : 0 <¢; <tp--- <t, <
1}. We shall define the conditional expectation E[®|B,] for a GWNF &.
As before we start with the case that ® is a test white noise functional.
I is easy to verify the following Lemma.

LEMMA 5.13. (a) Givenany 9 € £ and 0<t; <tp---<t, <1 we
have

Elp|B,)(z)

n—-1

= LW(Z (tj+1 - t])_l(x - y? bt(j_H) - btj)(bt(]'.H) - bt]‘) + y)w(dy)
j=1
(b) Define the mapping A(p) = E[p|B,]. Then A(£)) C &, and A is
continuous on &,. Moreover, {(Ap,v)) = (@, AY)), for all o, € &,.

Apply Lemma 5.13, we define the generalized conditional expectation
as follows:
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DEFINITION 5.14. For a GWNF @ € £ and ¢ > 0, we define
(E[®|Ba], o)) = (@, Elp|Bu])-

The above definition of generalized conditional expectation will pro-
vide a scheme for studying the generalized stochastic processes, we shall
discuss this subject in another paper systematically.

6. Generalized Itd formula

After [19], for f € S’ and a nonzero h € C', we define the composition
f(h) of f and h as follows:

DEFINITION 6.1. For any ¢ € &, define
«f(il)a 90» = ((éh ) f))

where ((-,-)) denotes the S — &' pairing and G’h‘p = (v2m)! e~ 2RI
Frap(uh).

A consequence of Definition 6.1, for ¢ # 0, f(B(t)) is then defined by
(6.1) (F(B©),e) = (Grpr ),

where Gy, (u) = (v21) " 1e-2¥0 F jo(uby).

Differentiate {(f(B(t)),)) with respect to t and employ the same
arguments as given in [19], it is not hard to verify that

SUIBE).P) = (FBO), 00N + 5 (BE), o).

This proves the following

THEOREM 6.2. (It6 formula). For F' € £*, and for b > a > 0, we
have

(62)  F(BW) = /av' )t + - /f%(»

REMARK 6.3. A different definition of f(B(t) was defined by I.
Kubo[9], there the generalized It6 formula (6.2) was first announced.
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The integral fab G; f'(B(t))dt appear in (6.2) is also called the Hitsuda-
Skorohod integral. In [9,13], Kubo and Takenaka has also shown that if

{X:} is nonanticipating and E| fab | X:|%]dt < oo, then

b . rb

The generalized process {f(B(t)} is understood as a nonanticipating
process in the generalized sense. Thus Theorem 6.2 indeed generalize
the It6 formula. We shall discuss the stochastic integration in more
details in the next section. For more systematical investigation for this
subject we refer the reader to [17)].

What happen if {f(B(t)} is replaced by a anticipating process, say,
{f(B(t),B(1))}. The corresponding It6 formula was also known as Hit-
suda’s formula (see [17]). We find that in the generalized sense the idea

for proving Theorem 6.2 also provides an easy proof for Hitsuda’s for-
mula. Let’s start with the definition of f(B(t), B(1)) for f € S'(R?).

DEFINITION 6.4. For any ¢ € £ and for f € S'(R?), define

(F(B®), B(1)), ) = (Qne» 1)
where ((+,-)) denotes the S(R?) — &'(R?) pairing and
Qh,v(“) = (\/5”)_23_%IUb'+vb1|2-7:1,z'<P(Ubt + vby)
= (\@W)"Qe”%uzt‘"”t‘%”zflyicp(ubt + vby).

Differentiating ((f(B(t), B(1)), ¢)), we obtain immediatedly the fol-
lowing Hitsuda’s formula:
THEOREM 6.5 (Hitsuda’s formula) [8,17].
B(l)) £(B(a), BQ)
/ B*fz B(1) )dt+/ fzy(B(t), B(1))dt

+3 [ FutB@), B
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7. Generalized stochastic integrals

In this section we shall define and study the stochastic integral for
an anticipating integrand which is in general a generalized stchastic pro-
cesses. Being motivated by H.-H. Kuo and A. Russek’s work [16], we
shall define and study the so called one-side integrals in a direct setting
without using S-transform and Wiener-Ité6 decomposition of white noise
functionals.

DEFINITION 7.1. Let X = {X; :t > 0} be a £*-valued process.

(a) Define

8- X, := lim %(DXt, beye — be)
if the limit exists in £*.
(b) Define

O-X; = elilé}_ %(DXt, bire — bt)

if the limit exists in ;.
EXAMPLE 7.2. (a) For f € &', we have
O+ f(B(t)) = 0 and ;- f(B(t)) = f'(B(t)).
In particular, we have ;- B(t) = 0 and 9;- B(t) = 1.
(b) Let Xi(z) = B(1,z) = (z,b;). Then we have
8t+B(1) = 1[0,1)(1;) and 0;-B(1) = 1(0,1](t)-
If we let X;(z) = B(1 —t,z) = (z,b1—;) then we have
8t+B(1 — t) = 1[0,%)(t) and 8t—-B(1 - t) = 1(0’%](t)

We are now ready to define the one side stochastic integral (see
[16,17]).

DEFINITION 7.3. (a) Let {X;} be a £*-valued continuous process
and, for each n, let T';, = {a = t;, < t;, < ...#, = b} be a partition of
[a,b] C [0,1] such that the mesh |T';| = maxi<j<{tjn — t(j-1n} — O as
n — 00.

Define the “right”-integral by

b k
/a XdB(t") := lim ijlXtu-l)n(B (tjn) = B(tG-1)n)

provided that the limit exists in £*.
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(b) Next suppose that {X;} is a £*-valued right continuous process with
only finitely many discontinuities {t;,%s,...,t,-1} such that {a = ¢, <
t) <ty < -+ <ty <t, =b}. Then we define the “right”-integral by

/XtdB(t+ Z XtdB(t“L)

ti-1

Similarly we define the “left”-lntegral as follows:

DEFINITION 7.4. (a) Let {X;} and I, be the same as given in
Definition 7.3(a). Then we define the “left”-integral by

/XtdB(t = hmz Kt (B(tin) = B(t-1)n)-

(b) Let {X;} be a left continuous process with only finitely many discon-
tinuities as given in Definition 7.3(b). Then we define the “left”-integral

by .
/ X,dB(t 2 " X,dB(t").

tj-1

LEMMA 7.5. LetT = {a =ty < t; <...tx = b} be any partition of
[a,b] and {X,} be a £*-valued continuous process. Then we have

ZXtJ-l ]) - B(tJ 1 ) - Z<DXt] 17 btj—1>

Z Dy -, ) Xt51-

j=1
Moreover, as |I'| — 0, the last term in (7.1) tends to fab I X, dt.
It follows from Lemma 7.5 that if the first sum of (7.1) tends to

A b X dB(t*) then the second sum will converge to a limit which will be
denoted by IJr ( ¢). This leads to the following

DEFINITION 7.6. Let {I',} be a sequence of partitions of [a,b] such
that |I',| — 0. Then we define

k
(7.2a) I[:,b](Xt) = 7}1_'1{.10 Z(DXt(j_])n,btj,, - bt(j—l)n>-
j=1
Similarly we define
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k
(72b) I[;,b](Xt) = JLI{.IO Z(Dthm btjn - bt(j-—l)n)'

J=1

PROPOSITION 7.7. Let {¢;} be a continuous E-valued process. Then
we have

(a) Oyp: is continuous function of t and

b
Ly (r) :/ Oyprdt.
a

) [P odB(t*) exists and [ 0, dB(t+) = [*Opr + [ 0;pudt.
It is natural to ask under what conditions

b
Ts(X) = [ 0-Xadt?
or

b
I[—(_l,b](Xt):\/a‘ at—Xtdt?

If {X;} is a continuous &£-valued process, the answer is positive as
we have shown in Lemma 7.7. To state the next Proposition which
answers the above question firmly and guarantee the existence of * “right-
integral” (or “left-integral”), we need the concept of strongly continuity
E*-valued functions introduced in the following

DEFINITION 7.8. An &*-valued function F'(t) defined on [0, 1] is said
to be strongly continuous if, for each m, the function F : [0,1} — &£ is
strongly continuous. A strongly continuous &;-valued function is defined
similarly.

The main result of this section is given as follows:
PROPOSITION 7.9. Let {X,:t € [0,1]} be an &-valued process.

(a) Suppose that X, and Oy X; are strongly continuous. In addition we
assume that 1(DX;, by — b)) — Op-X; uniformly int as e — 0". Then
we have

b b
/ X, dB(t) = / (6t+Xt+Bt*Xt)dt.
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(b) Suppose that X; and O,- X, are strongly continuous. In addition we
assume that 1(DXy, by —by) — O+ X, uniformly int ase — 07. Then
we have

b b
/ X, dB(t™) = / (&-Xt-%-B{Xt)dt.

Proof. We sketch the proof only for (a).

Let I’y = {a = top < t1n < - -+ < tx, = b} be a sequence of partitions of
[a, b] such that the mesh |[',| — 0 as n — co. Denote At;j, = t(j;1)n—tjn.
Since X; and J,~ X; are strongly continuous, we have, for each m,

tin b
6; - JI_I.I&Z at(';_l)"Xt(j—l)ndt = /a 0,:+Xtdt

n tin b
and £, ~lim Y / T Xy, ,dt = / 8; X,dt.

ti-1yn 1n

Also since

Z Xt(j-i)n (B(tjn) - B(t(j—l)n))
=1

"1
= Z Zt—j—(DXt(j—l)n’ B(tjn) = B(t-1n))Atin
j=1 ="

n tin
+y° / &, Xy dt,

j=1 YlG-n
it follows from the assumption that lim, .. 3 5 Xz, (B(tjn) = B(t;-1)n))
exists and we have

b b
/ X,dB(t") = / (8t+Xt+8{Xt)dt. -

COROLLARY 7.10. Proposition 7.10 remain true if “continuous” is
replaced by “piecewise continuous”.
P p.

EXAMPLE 7.11. (a) Suppose that X, is a “constant” £*-valued ran-
dom variable, say X; = F (F € £*). Then we have

/ X, dB(t) = / ’ X.dB(t") = F(B(b) — B(a))
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and, by the definitions given above, we have
b
(13) T =Top(X) = [ 01Xt~ F(B(®) - B(a)).

But in general ;- F does not exist unless that F' is sufficient smooth,
say F' € £ or F is measurable with respect to the o- field B, generated
by {B(u): 0 < u < a}.

Take F' = B(1), for example. It follows from (7.3) that we obtain
I y(Xe) = I )(Xe) = 1. On the other hand, note that F(z) = (z,b1) €
&, and recall that 8t+ = 101) and O = 1, 1] (see Example 7 2)

conclude that I+ fo 0~ B(1)dt and I[ b] fo 0B
(b) It follows by direct computation, we obtain
b 1 1
[ Bwdser) = 3B0) - Ba) - 36-a)

b

and / B(t)dB(t") = %(32(b) - B%a)) + %(b —a).

c) If {X;} is nonanticipating such that E] fab |X¢|?]dt < oo, then we have
8t+Xt = 0

b b
/ XidB(tt) = / 9; X,dt.

(d) It follows from Example 7.2(a) that if f € S we have

/fﬂB(t»dB(t*) - / 81 F(B(t)) e
/ab f(B(t))dB(t") / ( "(B (t))+a;f(3(t)))dt_

In particular, we have

o

/ B)dB(t) = / & B(t)dt
= (B®) - B -6~ o)
and /abB(t)dB(t‘) - /ab(1+a;3(t))dt

((B*0) - B*(@) + (o - ).

DO =



634 Yuh-Jia Lee

REMARK 7.12. The stochastic integration for anticipating inte-
grands had been studied by many authors (see, for example, [1,3,7, 15,
16,21)) by different methods. Our approach which depends very much
on the calculus on C provides a direct way to study generalized stochas-
tic integration. To see how far this approach can reach, it is desirable
to investigate this subject more systematically along this line.
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