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WHITE NOISE APPROACH TO FLUCTUATIONS
TAKEYUKI HIDA

ABSTRACT. We are interested in random phenomena that will vary
as time goes by, being interfered with by fluctuation. These phenom-
ena are often expressed as functionals of white noise. We therefore
discuss the analysis of those functionals, where the white noise is un-
derstood as a system of idealized elementary random variables. The
system is, in many cases, taken to be the innovation of the given
random phenomena. The use of the innovation provides a powerful
tool to investigate stochastic processes and random fields in line with
white noise analysis.

1. Introduction

A typical mathematical model of fluctuation is certainly a white noise.
If one is interested in dealing with actual random phenomena with fluc-
tuation, he is naturally led to discuss functionals of white noise. The
analysis of white noise functional has extensively developed and has oc-
cupied an important part of the infinite dimensional analysis.

It is now the time to have a review of the white noise analysis and
to improve it so as to be situated within the pure mathematics in a
most suitable position and to have good applications in various fields of
science. For this purpose the following three subjects are now proposed.

1) White noise should be thought of as a system of idealized elemen-
tary random variables which are taken to be the variables of white noise
functionals.

2) Usually actual random phenomena enjoy complex way of depen-
dency, specifically when the space-time parameter varies. To describe
such complex dependency it is sometimes convenient to have random
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fields indexed by a manifold C' that runs through the space-time pa-
rameter space. Namely, we take random fields X(C) with parameter
C.

3) We often meet actual examples where input information is not
given, but only output is observed. In order to investigate such random
phenomena we have to provide a class of white noise functionals the
properties of which are known.

Having proposed the research plans as above, we now proceed to
discuss the related mathematical problems in order.

2. Idealized elementary random variables

The name in the above title came from the conversation with Professor
John R. Klauder who suggested to call a white noise by this name.

Let B(t) be a Brownian motion, which is Gaussian in distribution and
has independent increments as is well known. Take the time derivative
of B(t), let it be denoted by B(t). It is a realization of a ”white noise”.
The system {B(t)} is elementary in a sense that each B(t) is atomic
random variable, although it is an infinitesimal random variable and
its sample paths are generalized functions of ¢. Still, it is fitting to
be a system of variables of a random function since it is a collection
of independent random variables. (This independent property will be
explained in details just below.) Thus we may call the {B(t)} a system
of idealized elementary random variables (abbr. ier.v.). Even, it is a
Gaussian system, which means that it forms the most important system.

Here is an important remark. The {B(t)} may simply be called an
independent system, but it does not mean that it consists of continu-
ously many independent random variables. We should understand that
we associate each B(t) with an infinitesimal interval dt. Such an under-
standing is quite important when we discuss various profound calculus
of white noise functionals and when we wish to express the fluctuation
arising from the natural phenomena in terms of white noise.

Having fixed the system of variables of random functions, we may
write them in the form

(2.1) ¢(B) = p(B(t),t € T),

T being an interval. Once the variable is chosen, it is natural to define
polynomials in B(t)’s, exponential functions of them and so forth, and
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to define the space (S)* of generalized white noise functionals. Then, we
come to the differential operator with respect to the variable:
0
(2.2) O = ——.
0B(t)
To concretize the above notions together with other concepts we intro-

duce the following notions. Let E be a nuclear space which is a member
of a Gel’fand triple:

(2.3) E Cc I*(R) C E*,

where E* is the dual space of F.

The probability distribution p of the {B(t)} is introduced in E* and
we are given the complex Hilbert space (L?) = L%(E*, ). A member
¢(z) is called a white noise functional. It is viewed as a realization of a
formal expression ¢(B).

There is a transformation called S-transform of white noise function-
als defined by

i

(5e)©) = [ ele+e)duta)

- e |—5l61?] [ explteOlduta),

which is often called a U-functional associated with ¢ and is denoted by
U(&).

We are now ready to define a differential operator 9;, that was briefly
mentioned in (2.2), with respect to the variable B(t):

(2.4 =57 | S|
where 5—5‘25 is the Fréchet derivative. The operator 9; defined by the
formula (2.4) is an annihilation operator and its adjoint operator 9} ia
a creation operator.

By using the annihilation and creation operators as well as their com-
binations we can carry on the white noise analysis. Note that the back-
ground of the calculus is based on the i.e.r.v. {B(¢)}.
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3. Factorization of the Volterra or Gross Laplacian

The Volterra and the Gross Laplacians, acting on the space of white
noise functionals, are denoted by Ay and Ag, respectively. They are
essentially the same and are expressed (following H.-H. Kuo) in the form

(3.1) / 82dt.

For the study of the action of the Volterra Laplacian, it is helpful to have
it factorized. To get an explicit expression we must remind the remark
that the B(t) is to be associated with dt as was mentioned in the last
section.

There is a well-known property of the finite dimensional Laplacian
illustrated by using the difference between the value of a function at a
point and its mean values on a circle around the point.

The same idea is applied in the case of white noise functionals. Let
Y (t) be a system of independent standard Gaussian random variables
and let a(t) be a (nonrandom) real valued function of tt. The equality

(3.2) expla(?)Y ()do(z) = o(z(.) + a(t)o(.)Y (t))
can be proved by applying the S—transform. Similarly the equation
(3.3) Ey{expla(t)8,Y ()]} = exp Ba(t)28t2}

can be shown. The notation Fy means the expectation on the proba-
bility space where Y (¢)’s are defined. Set, in somewhat formal manner,
a(t) = eV/dt and take the products with respect to dt’s of both sides in
the above equation. Then the left hand side is expressible as

(34) Ey {exp [e / atY(t)\/ﬁ] }

which is equal to

o o2 [o1a] e [S]

On the other hand, it is in agreement with

(3.6) Hgo )+ €6,()Y (t)Vdt) = p(z + ey),
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where [],, means the iteration of the shifts by €d,(.)Y (t)V/dt for all dt’s,

and where y is a trajectory of a Brownian motion [ Y (s)v/ds. Hence we
conclude

.2
(3.7) Avep(e) = lim 5 By {p(z + ey) — ¢(2)},
as was to be expected.

REMARK. The fact shown above (in particular, (3.4)) suggests to
define an integral of operators which may be expressed in the classical
notation,

(3.8) A= / B,dB(2).

The formula (3.8) is viewed as a stochastic integral of the 0, with respect
to dB(t), B being a Brownian motion. Now we have

THEOREM. The Volterra Laplacian Ay is factorized in such a way
that

B(A?) = / / 0,0,0(t — s)dtds
= Ay,
where A is given by (3.8).

Intuitively speaking, the operator A is a square root, in the stochastic
sense, of the Laplacian Ay.

4. Random fields

The next topic is a random field X(C) = X(C,z) which is a white
noise functional indexed by a manifold C. We often meet such a random
function X (C)) fluctuating by the influence of the environment depending
on C. In general a random field X(C) behaves in a very complex manner
in dependency as C' varies.

The innovation approach to X(C) is a powerful tool for the investiga-
tion of the probabilistic structure of X(C). In some interesting cases, the
innovation {Y(s),s € C} for X(C) can be obtained by the variational
calculus for X (C). Once the innovation is obtained, the given field can
be expressed as the functional of the innovation. Thus the probabilistic
structure of the random field is expressed in a visualized manner.
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There is a significant class of random fields (see Si Si [11}), which are
discussed in this line. The following random field X(C) illustrates the
idea.

Let X(C) be given by

(4.1) X(C) = /(C)" F(C,u) : 2"®(u) : du,

where u € (C)", and (C) is a domain enclosed by a smooth oval. As-
suming the canonical property, the innovation is obtained.

Another approach is a generalization of the Langevin equation for
random fields.

PROPOSITION. Let X(C) be defined by a Langevin type equation.
IX(C) = ——X(C)/ p(s)on(s)ds
c

+Xo / o(5)3:6n(s)ds,
C
(C) 2 (Go),C € (C),

where ¢ and v are given continuous functions, and where (C), is a class
of plane circles. Then the solution is given by

(42) X(C) = X /(C) exp [~ (C, u)p(w)| Bl (w)d,

where p denotes the distance.

The assertion is proved by using the S—transform. It would be nice
if a variation of a field f(X(C)) is obtained for a smooth function f.

REMARK. It would be fine if a generalization of the Ité formula is
established for the field f(X(C)).

5. Concluding remark

As the white noise analysis develops, more interesting applications
are discovered. Among others, there is a problem to identify a black box
that admits white noise input.

white noise — nonlinear system — output
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See K.-I. Naka et al (8], where the reaction of the catfish retina is dis-
cussed in this line.

While, if the input is unknown and if only output is observed, then
we first check if there is a possibility of white noise input. Second, we
compare the observed output with known white noise functionals.

For the first step, we should remind significant properties of white
noise or Brownian motion; not only Gaussian and independent increment
properties, but also the optimality of Brownian paths and irregularity
of them (see e.g. P.Lévy [4]), and so forth.

Another technique is to form a random field that comes from the fluc-
tuating phenomena. The variational calculus of the field, as we observed
in the last section, tells us much finer way of dependency of the field.
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