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PRODUCTS OF WHITE NOISE FUNCTIONALS
AND ASSOCIATED DERIVATIONS

DoNG MYUNG CHUNG!, TAE Su CHUNG? AND UN Cic Ji3

ABSTRACT. Let the Gel'fand triple (E)g C (L?) C (E)} be the
framework of white noise distribution theory constructed by Kon-
dratiev and Streit. A new class of continuous multiplicative prod-
ucts on (E)g is introduced and associated continuous derivations
on (E)g are discussed. Algebraic characterizations of first order
differential operators on (E)g are proved. Some applications are
also discussed.

1. Introduction

We take, as a framework of white noise distribution theory, a Gel'fand
triple

(1.1) (BE)s € (L?) = L*(E*, i C) C (B)5, 0<B<1,

which was constructed in [18], where E* is the space of tempered dis-
tributions and u is the standard Gaussian measure associated with a
Gel’fand triple E ¢ H C E*. In particular, if 8 = 0, (1.1) becomes
(E) c (L?) c (E)*, which was constructed in [19]. The white noise
distribution theory is an infinite dimensional analogue of the Schwartz
distribution theory in which the role of Lebesgue measure on R" is
replaced by the Gaussian measure y on E*. This theory was initiated
by Hida [11] and has been considerably developed with applications to
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stochastic analysis, Feynman path integral, infinite dimensional har-
monic analysis, quantum probability and Cauchy problems in infinite
dimensions and so on, see e.g., [1]-[9], [12]-[15], [22]-[26], [30].

It is well known [13,24] that the Wiener and Wick products are con-
tinuous multiplicative operations on (E)g and so (EF)z becomes a topo-
logical algebra under the Wiener and Wick products. Furthermore, we
note that the differential operator D, is a first order differential op-
erator as well as a continuous derivation on (E)g. Motivated by this
point of view, Obata [29] determined all the continuous derivations on
(E) with respect to the Wiener products and then showed that they
are first order differential operators with variable coeflicients. In [1],
Chung and Chung showed that the results in [29] can be extended to
the Wick product case. Recently, Chung and Chung has introduced
a class {0,,7 € C} of multiplicative products on (FE) including the
Wiener and Wick products and then have showed that with each o,
and an (F)-valued distribution ¢ on R, we can associate a first or-
der differential operator with variable coefficient ®, which is indeed a
continuous derivation on (F) with respect to ©.,.

In this paper, we shall see that Eg ,(k) + N is similar to N, i.e.,
there exists a linear homeomorphism G. € GL((E)g(m)) such that
Zo,m(k) + N = G;1NG, (Corollary 3.7), where Zg (k) and N are the
integral kernel operator with kernel distribution x € (EE™)* and the
number operator, respectively. Next, we define a product ¢, associated
with G, and prove that a first order differential operator with variable
coefficient associated with ¢, is indeed a continuous derivation on (E)g
with respect to ¢, (Theorem 5.4), and then Zg (%) + N is a contin-
uous derivation on (E)s with respect to the product ¢.. Finally, as
applications, we shall study the eigenvalue problem, Cauchy problem
and Poisson type equation associated with Zg ., (k) + N.

2. Preliminaries

Let H be the real Hilbert space of square-integrable functions on R
with norm | - |p. Let S(R) be the Schwarz space consisting of rapidly
decreasing C°-functions. Then we have a Gel’fand triple:

(2.1) E=8R)C HcS[R)=E"
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where E* is the space of the tempered distributions. Note that the
Gel'fand triple (2.1) is reconstructed by using a positive self-adjoint
operator A = 1+ #2 — d2/dt? on H with Hilbert-Schmidt inverse (see
[13], [24], [28]). In fact, F is a nuclear space equipped with the Hilber-
tian norms [{|, = |AP€|o, £ € E,p € R. Let p be the standard Gaussian
measure on E* whose characteristic function is given by

) 1
/ elh’ﬁ)u(dx) = exp (—§|€|3> ) § € Ea
E*

where (,-) is the canonical bilinear form on E* x E. The canonical
C-bilinear form on (EE™)* x (E2™) is also denoted by the same symbol
(-y+). We denote by (L?) = L%(E*, u;C) the complex Hilbert space of
square integrable functions on E* with norm | - |o. By the Wiener-Ito
decomposition theorem, each ¢ € (L?) admits an expression

x>
(2.2) d(z) = Z( 2 £, z € E*, f,e H2®",

n=0

and |@|§ = Yoo on!|fnld, where H®™ is the n-fold symmetric tensor
product of the complexification of H and : z®" : denotes the Wick
ordering of z®™.

Let 3 be a given real number with 0 < 8 < 1. For each p > 0, define

o0
15,6 =>_(a)" IS}, ¢ € (L),
n=0
where ¢ is given as in (2.2). Let (Ep)s = {¢ € (L?) : |$lp,s < oo} and
let (E)s be the projective limit of {(E,)s : p > 0}. Then (E)s is a
nuclear space and we have a Gel’fand triple:

(2.3) (B)s € (L?) C (B)p,

where (E)} is the topological dual space of (E)s. The triple (2.3) is
called the Kondratiev-Streit space [18]. If 8 = 0, then (2.3) is called
the Hida-Kubo-Takenaka space and denoted by (E) c (L?) C (E)*.
An element in (F)g (and in (E)j;) is called a test (and generalized,
resp.) white noise functional. We denote by {(-,-)) the canonical C-
bilinear form on (E)j; x (E)g. For each ® € (E)j, there exists a
unique sequence {F,}32, F,, € (EE™)%, .., such that

sym
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oo

<<(I)a¢» = Zn!<Fnafn>, ¢E (E)ﬂ>

n=0

where ¢ is given as in (2.2). In this case we use a formal expression for

de(E);:

®(z) = Z(:m®":,Fn), z € E™
n=0

For each £ € Eg, the function ¢¢ € (E)g given by

— - . n, o — 1 *
@) =362, ) = e (00 - 3(60), ze B

is called an ezponential vector. Note that {¢, : £ € Ec} spans a dense
subspace of (E)g. The S—transform of ® € (E)} is a function on E¢
defined by

S®(€) = (@, ¢¢), €€ Ec.

In [18], Kondrative and Streit proved a characterization theorem for
elements in (E)E and (F)g by analytic properties of the S—transforms.
By using the characterization theorem, for each ®,¥ € (E)} the Wick
product ® o ¥ € (E)} is defined by S(® o ¥) = §® - SU. In facts
po € (E)g, ¢, € (E)s and the Wick product is a continuous
multiplicative operation on (E)s (see e.g., [24]).

Let £(%,9) denote the space of all continuous linear operators from
a locally convex space X into another locally convex space 9). Also
for notational convenience we write £(X) = L£(X,%). For each Z €

L((E)p,(E)}3), the C-valued function £ on E¢ x Eg defined by
2(&m) = (Eéeda),  Eme Be

is called the symbol of operator =. The following theorem is a char-
acterization theorem for symbols of operator in L((E)g, (E)3) and in

L((E)s) ([24], [27], [28]).

THEOREM 2.1. A C-valued function © : E¢c X Ec — C is a symbol of
anZ € L((E)p, (E)p) if and only if © satisfies the following conditions:

(O1) For each &,¢',n,1 € E¢, the function
(z,w) = O(26 + &', wn +7')
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is an entire function on C x C;
(O2) There exist constants K > 0, C > 0 and p > 0 such that

0(6,m)] < K expC (|e|;‘3? FInl? ) . &nebe

Moreover, © is the symbol of an operator in L((E)g) if and only if it
satisfies (O1) and

(02') For any p > 0,€ > 0, there exist ¢ > 0 and K > 0 such that

0(6,m)] < K expe (|s|,;_z ; Inll’?) , &meEe

For each y € E{ there exists a unique operator Dy, € L((E)g)
such that Dy¢s = (y,€)¢¢, & € Ec which is called the annihilation
operator. The adjoint operator Dy € L((E)j) of Dy is called the
creation operator. By Theorem 2.1, we can show that for each k €
(Ec®+m)y*  there exists a unique operator Z;m(k) € L((E)s, (E)3)
such that

Em)(ﬁ,ﬂ) = <<El,m(ﬁ')¢£’¢‘r]» = (f€ﬂ7®l ® €®m>e(£’n>, €a77 € Ec.

This operator Z; (k) is called the integral kernel operator with kernel
distribution k. In particular, Ag = Zp2(7) and N = Z; ;(7) are called
the Gross Laplacian and number operator, respectively, where 7 is the
trace defined by (1,6 ® ), €,7 € Ec. It is well-known that for each

K E (Eg)(l—%-m))*, El,m("i) € ['((E)ﬂ) if and only if k € (Egl) ® (Egm)*,

3. Transformation group on white noise functionals

In this section we obtain a two-parameter transformation group G
on (E)g. Moreover, we shall prove that there exists an element G, € G
such that G.(Zo m(k) + N)G.t = N. For notational convenience, we
define a function §: NU {0} — [0,1) by

0, m=0,1
1-2, m=23,..-.

gm) = {
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LEMMA 3.1. Let x € (E@™)* and a € C. Then there exists a unique
operator G o € L((E)g(m))) such that

gn,a¢£ = ekp{(n, §®m>}¢a£7 § € Ec.

Proof. Let k € (EE™)* and a € C. For any £, € Ec, we put

O(&,n) = exp{(x,£%™) + a(¢,n) }.

Then the function © satisfies conditions (O1) and (02’) in Theorem 2.1
with 8 = B(m). Hence by Theorem 2.1, there exists a unique operator
g,g,a € ﬁ((E)g(m)) such that

Grralsn) = (Gr,ade, dn)) = O(E, 7).

This complete the proof. 0

Let C and C* = C — {0} be the additive and multiplicative groups
of complex numbers, respectively. Let GL(X) denote the group of all
linear homeomorphisms from a locally convex space X onto itself.

THEOREM 3.2. Let k € (EQ™)* be fixed. And let G = {Gunp ; a €
C,b € C*}. Then G is a subgroup of GL((E)g(m))-

Proof. By Lemma 3.1, we have Gy, 1¢¢ = ¢¢ for any £ € E¢, and
Garr b (Ganppe) = exp{(a + a'b™)(k,£%™) }dvrve = Glatarbm)nproPe;

for any a,a’ € C and b,b/ € C* and £ € Ec. But {¢; : £ € Ec}
spans a dense subspace of (E)g(m) and for any a € C,b € C*, Garp is
continuous. Hence it follows that for any ¢ € (E)a(m),

gOn,1¢ =¢ and ga’n,b’(gan,b¢) = g(a+a’bm)n,b’b¢'
Then G(_gp-myp-1 is the inverse of Gurp in G. O

Let o € L((E)j(y,)) be the adjoint operator of Gy o. Then by

using similar arguments as in [5], we obtain explicit expressions F, ,®
and Gy ,¢ for & € (E)E(m) and ¢ € (E)gm)-
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THEOREM 3.3. Let ®(z) = > 2 (: z®" 1, F,) € (E)

(E&™)%m- Then we have, for any positive integer m,

Bmy Fn €

oo [Z]
™m 1 .
Fea®(@) =D (:a®", Ean-mkpn_mkm@k).
n:O k:o '
THEOREM 3.4. For ¢(x) = 327 ((:2®":, frn) € (E)g(m); fn € Egn,
we have, for any positive integer m,
o0 o0

n n 4+ mk)! A~
Grab(z) = Z( z®":, Z (—W—)—a"/ﬁ®k®mkfn+mk).
n=0 k=0
PROPOSITION 3.5. The operator G, , is expressed by
Gro= e(loga)N o eEo,m(n).

Proof. Let ¢(z) = Y o2 o(:2®™:, f,,). Then by Theorem 3.4, it holds

n=0
that gOK,,a¢ = e(loga)N¢ and gn,1¢ — e£0,m('¢)¢_ Clearly, gOn,a o gli,l —
Gr,o- Hence we complete the proof. O

ProPOSITION 3.6. For any a;,as € C, we have
Gr,a(a1Z0,m(k) + 0oN) = ((al + agm)e_mbgan,m(n) + azN)g,.;,a.

Proof. Note that for any k € (EE™)*,
[N, E0,m (k)] = —mE0,m(r).
Therefore, we have
eFom® N = (N + mEo,m(x))e=om)

and

e(loga)NE —mIogaE e(log a)N-

om(K) =€ 0,m (%)

Hence by Proposition 3.5, we obtain that
Gr,a(@1Z0,m(K) + 0aN) = ((a1 + agm)e ™85, (k) + @2N)Gy.a-
Thus we complete the proof. O

COROLLARY 3.7. Let k € (E@™)* and let G,, = G_1,1- Then we
have

G (Eo,m(K) + N) = NGx.
Proof. The proof is straightforward from Proposition 3.6. O
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4. Products on white noise functionals

In this section, we introduce a new class of continuous multiplicative
products o, on (E)s indexed by x € (E@™)*.

Let H be a linear homeomorphism on (E)g. Then we can define a
continuous multiplicative operation oy on (E)s associated with H by

pou v =H ' HopoHy), &€ (E)s,

where ¢ is the Wick product.

PROPOSITION 4.1. Let = € L((F)g). Then E is a derivation with
respect to the multiplication oy, i.e., Z(¢ oy 1) = Ep oy ¥ + P oy Zp,
&, € (E)g if and only if HEH ™! is a derivation with respect to the
Wick product.

Proof. The proof is clear from the definition of oy. a
From now on we only consider the case H = G, for a fixed kernel
k € (EE™)* with integer m > 2, where G, is given in Corollary 3.7.

We put o, = og, . That is, ¢, is a continuous multiplicative operation
on (E)g(m) defined by

(41) ¢ o ¢ = ggl(gﬂﬁ < gn"z))) ¢)'¢J € (E)ﬂ(m)

PROPOSITION 4.2. Let k € (EE™)*. Then there exists a unique
operator T,; € L((E)g(my), (E),Z(m)) such that the following hold:

(4.2) ¢t O Oy = i(ﬁ,n)¢g+n, ¢,n € Eg,

and
(4.3) (¢ o b, dn) = M (Tuipe 0 6y, ), 6 € (E)pmy, &, € Exc.

Proof. By using the equation (4.1) we can easily see that

1
¢§ Or ¢n = €Xp {E(K/a (€ + 77)®m - §®m - T]®m>} ¢§+na 5777 € EC-
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Note that the function ©.(¢,n) = exp { & (k, (£ + 7)®™ — 8™ — n®™)}
satisfies (O1) and (O2) in Theorem 2.1. So, there exists a unique op-
erator Ty € L{(E)g(m): (E)j(rmy) such that (4.2) holds. Now for any
&,m,¢ € Ec we observe that

(b¢ ox des b)) = (Tude, Pe) (bere, Pnl)
= M (T e, dc)) (9, én)
= el (T b © by b )-
Since O, is symmetric, we have T, = T}, and hence (4.3) holds for all

¢ = ¢¢,¢ € Ec. Thus the proof follows from the fact that {¢¢; { € Ec}
spans a dense linear subspace of (E)g(m)- (]

EXAMPLE 4.3. Let k € (EZ?)* and % € L(Ec, E}) be given by

(R,m) = (k,€®@m),  &me Ec.
Then we have
e On B = e("’5‘§”>¢5+n — e%((E+E")€m)¢£+m ¢,n ¢ Eg.
Hence we obtain that T, = I'((K + K*)/2), where I'(A) is the second

quantization operator of A € L(Ec,Eg). In this case, the equation
(4.3) becomes

(8 ox B, Bn)) = €M (D1 rrrern By @ € (B)aim),€:m € Ec.

Moreover, if k € (Egz);‘ym, then we have

(¢ ox b, dn)) = € (Sresn, 8, ¢ € (E)pm) € € Ekc.

In particular, ¢, becomes the y-product ¢, studied in [2]. Further-
more, op is the Wick product and ¢, is the Wiener product (see [2],
[24]).
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5. First order differential operators

In [2], Chung and Chung discussed the first order v-differential op-
erator = € L((E)) with coefficient ® € E¢ ® (E), where Z is given
by

== / (I’(t) Oy 3,5 dt
R
as a formal integral expression. We now introduce a first order differ-
ential operator associated with the o.-product.

PROPOSITION 5.1. Let k € (EE™)* and let ® € E¢ ® (E)g(m).
Then there exists a unique E € L((E)g(m)) such that

E(E,m = (8,8 on des#n),  &m e Ec,
where (®,£) € (E)p(m) is given by

((®,6),0) = (2,6 @0), @€ (E)pim)-

Proof. The proof is immediately from that the function

@(§> 77) = «((1)1&) <>N ¢§, ¢U»7 §,n S EC
satisfies (O1) and (O2') in Theorem 2.1 with 8 = 3(m). O

DEFINITION 5.2. Let k € (E@™)* and & € E{ ® (E)p(m)- The
operator = defined in Proposition 5.1 is called a first order k-differential
operator with coefficient ® and denoted by

= =/<1>(t) o Oy dt
R

as a formal integral expression.
THEOREM 5.3. Let k € (EE™)* and @ € EE ® (E)g(m). Then for
E € L((E)p(m)) the following statements are equivalent:

(i) Z is a first order k-differential operator with coefficient ®.
(ii) For any € € Ec and n > 0, we have
B((:-97:,€57) = n(: 20D, g0(n-)
(iii) For any§ € Ec andn > 0, E((-,£)°*™) =

Iﬁ‘,@,)

o (
(€)= " Vo (@, ).
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Proof. (i) = (ii) Since E is a first order s-differential operator with
coefficient ®, the symbol of = is given by

E(6m) = (Ede, 60 = ((2,8) 0x 0,60, & € B
Hence we obtain that for any § € Ec, E¢¢ = (®,£) 0, ¢¢. Therefore
for any € € E¢, ¢ € (E) and z € C, we have

oo

(G 2 1 e0m), g
n=0

=3 ﬁ««p,s) o (: BT 1 £B0D) g n
n=1 )

Thus the proof follows.
(ii) = (i) The proof is obvious.
(ii) < (iii) Note that for any & € Ec, G2 1({-,¢)) = (-,&). Hence by
the definition of ¢, we obtain that for any ¢ € F¢
x

Z H(56)° = G lge = em e Mg,

n=0""
Therefore (ii) implies that for any £ € E¢

> (R = e 3 (om0

n=0

> B = 3 26 0 (8,627
n= ’ n=0 "

Similarly (iii) implies that for any £ € E¢c and 2 € C

o0 1 o0
D B ST = 3 (0 9 o, (8,627,
n=0 n=0

Thus we complete the proof O
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THEOREM 5.4. Let k € (E€™)* and E € L((E)g(m))- Then E is a
derivation with respect to o, if and only if = is a first order k-differential
operator with some coefficient ® € E¢ ® (E)a(m)-

Proof. Let = be a first order k-differential operator with coefficient
® € E& ® (E)gm).- Then we note that G.(-,&) = G1(-,€) = (-,€)
for all £ € Ec. Then the operator Z' = G.EG! is a first order Wick
differential operator with coefficient &', where &' € Eg ® (E)g(m) is
given by (®',£) = G (®,&) for each € € E¢. In fact, we have

E((: 8" 1, €8™) = G.EGT((-, £)°™)
= gnE(('aé)onn)
= gn(n<'a§)05(n*l) Ok <q)7€>)
=n(: ®(n-1) :,§®("_1)) o (®,¢).

So, by Theorem 4.5 in [1], =’ is a derivation with respect to ¢ and hence
by Proposition 4.1, E is a derivation with respect to o.

Conversely, let E be a derivation with respect to o,. Define a map 3
Ec — (E)p(m) by ®(£) = E((,£)), £ € Ec. Then ® € L(Eg, (E)a(m))-
Hence there exists a unique ® € E¢ ® (E)g(m) such that

<<I>,§> = E((a&)), 5 € EC-

Since = is a derivation with respect to o, for any £ € Ec and n > 0
we have

E((,6)°") = n(, "V o, E((-,€) = n(-, )"V o, (&, 8).

Thus by Proposition 5.3, Z is a first order x-differential operator with
coefficient ®. O

EXAMPLE 5.5. For each y € Ef the differential operator D, is a
first order k-differential operator with coefficient y ® 1.

EXAMPLE 5.6. Let x € (E@™)*. Then by Corollary 3.7 and Propo-
sition 4.1, 2o m (k) + N is a derivation with respect to ¢,. Moreover, by
Theorem 5.4, Zg (k) + N is a first order x-differential operator with
coeflicient @, where (®g, ) = (Eo,m(k) + N)((-,§)) = (-,&§). In partic-
ular, YAg+ N is the first order y7-differential operator with coefficient
Dq (see [2]).
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6. Applications

In this section, we shall discuss the eigenvalue problem, Cauchy
problem and Poisson type equation associated with Zg (k) + N, & €
(EE™)".

We now consider the eigenvalue problem associated with Zg (k)N
i.e., we consider

(6.1) (Eom(k) + N)yp = M,

where ¢ € (E)g(m) and A € C are unknown.
By using the fact that Zg (k) + N = G; ING.., we easily have the
following proposition:

PROPOSITION 6.1.

(i) A is an eigenvalue of Zg m(k)+N if and only if A is an eigenvalue
of N.
(ii) ¢ is an eigenfunction of Zo.m (k) + N if and only if G.¢ is an
eigenfunction of N.
(iii) The set of all eigenvalues of Zg (k) + N is {0,1,2,--- }.

Now, we consider the following Cauchy problem:

dut

(62 =

= —(Zo,m(K) + N)uy, uo = ¢ € (E)g(m)-

Note that %; = Gg .- is the one-parameter subgroup of GL((E)g(m))
with infinitesimal generator —N (see [5], [17], [24]). Hence we can
easily check that u; = GG .-+Gy is the one-parameter subgroup of
GL((E)p(m)) with infinitesimal generator —(Zo,m(x) + N). Thus we
have the following theorem.

THEOREM 6.2. Let ¢ € (E)g(m). Then uy = GGy -G €
(E)g(m) is a unique solution of the equation (6.2).

Finally, we consider the following Poisson type equation:
(6.3) (Bom(k) + N+ M)u= ¢,

where ¢ € (E)g(m) and A > 0.
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The A-potential (A > 0) of test functional ¢ € (E)g(m) is defined by

o0
Hyo = / Gy .-t
0

where the integral is a white noise integral (see [17], [24]). For the case
A = 0, define the normalized potential of ¢ € (E)g(m) by

Go= [ Gouno— Bt
where E(¢) is the expectation of ¢.
THEOREM 6.3 [17]. Let ¢ € (E)g(m). Then we have
NGop=¢—E(@) and (N+M)Hrp= .

THEOREM 6.4. Let k € (EE™)* and ¢ € (E)g(m). Then u =
G Hx\G¢ € (E)g(m) is a solution of the equation (6.3).

Proof. Let ¢ € (E)g(m)- Then by Theorem 6.3, v = H)Gx¢ is a
solution of the equation (N + AI)v = G.¢. Hence we obtain that

(X (N + A)G)G v = ¢.
Thus by Corollary 3.7, we have
(Bom(k) + N +ADG v = 6,
That is, u = GZ1H )G, ¢ satisfies the equation (6.3). d

THEOREM 6.5. Let ¢ € (E)g(m). Then we have
(Eo,m (k) + N)G'GGro = ¢ — E(Gxd).
Proof. Let ¢ € (E)g(m). Then by Theorem 6.3, we have
NGGr¢ = Grd — E(Gu)-

Hence we have

(G 'NGr)G: GGxd = ¢ — G E(Gud) = ¢ — E(Gud).
Thus by Corollary 3.7, we complete the proof. O
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