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KERNEL OPERATORS ON FOCK SPACE
CHANGS00 BAHN, CHUL K1 KO AND YONG MOON PARK

ABSTRACT. We study on kernel operators (Wick monomials} on
symmetric Fock space. We give optimal conditions on kernels so
that the corresponding kernel operators are densely defined linear
operators on the Fock space. We try to formulate our results in the
framework of white noise analysis as much as possible. The most
of the results in this paper can be extended to anti-symmetric Fock
space.

1. Introduction

Let F(L?) be the symmetric Fock space over L?(R?, dz) and let a(k)
and a*(k), k € R?, be the annihilation and creation operators (bilinear
forms) on F(L?) respectively [1, 4, 8]. Consider the following type of
integrals

(1.1)

Tw = ,/]Rd(n ) w(kl’ R knnpl’ e ’p"2)(Ha*(ki))(Ha(pi))dkdp’
1+m2 =1

i=1
where nj,ny € N. Such integrals, known as Wick monomials, are stan-
dard in quantum field theory [2, 8]. There have been many studies on
sufficient conditions under which Ty becomes a densely defined (un-
bounded) operator on F(L?) ([3], Proposition 1.2.3 and [8], Theorem
X.44).

In white noise analysis [4, 6], the integrals (1.1) have been extensively
studied under the name of white noise kernel operators of order (ny, ng).
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Let
(1.2) (S) < (L¥) c (s

be the Gelfand triple of white noise functions. If the kernel w belongs
to S'(R4m+m2)) Ty, is a continuous linear operator from (S) to (S)* ([4],
Theorem 6.2). In application, it should be important to know conditions
on the kernel w under which T becomes a continuous linear operators
from (S) to (L?). We mention that in quantum probability theory the
Wick monomials are defined in terms of stochastic integrals and called
Maassen’s kernels [5, 7).

The purpose of this paper is to give minimal conditions on the kernel
w € S'(R¥m+m)) 50 that the corresponding operator Ty becomes a
densely defined operator on F(L?) (and (L?)). We formulate our results
in the language of white noise analysis. One of our main results can be
described as follow: Let W be a continuous linear map from S(R%*) to
L?(R™) defined by a kernel w. Then Ty formally defined as in (1.1)
becomes a continuous linear operator from (S) to (L?). Thus Ty defines
an unbounded operator on (L?) with domain (S). See Theorem 3.1 in
Section 3.

We organize this paper as follows : In Section 2, we recall the defini-
tions of the symmetric Fock space, and annihilation and creation opera-
tors. We then recall the known results ([8], Theorem X.44 and {3], Propo-
sition 1.2.3). In section 3, we first recall Gelfand triple of white noise
functions and then consider kernel operators associated to unbounded
operators from L?(R%) to L?(R%") with domain S(R%2). Finally we
consider kernel operators associated to bounded operators from L?(R%™)
to L2(R9™).

Before closing the introduction, we remark that most of the results
in this paper can be extended to kernel operators on anti-symmetric
(fermion) Fock space.

2. Preliminary : Fock spaces

In this section, we recall the construction of symmetric Fock spaces,
and the theory of creation and annihilation operators on Fock space. We
then provide some known facts on kernel operators on Fock space. For
more details, we refer the reader to the references [1, 8|.
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Let ‘H be a complex Hilbert space. In this paper we are mainly
interested in the case of # = L?(R%). Denote by H™ the n-fold tensor
product of H : H™ = H® H ® --- ® H(n times). Let S, be the
symmetrization operator on H™ defined by

21) S ®Y®---®v,) = % Z Yr) ® Ya(2) @« * ® V()

nepl,

where P, is the permutation group on n elements. Put

(2.2) FM(H) = S, H™.
The symmetric Fock space over H is defined by
(2.3) F(H) = &7 F (M),

where FO/(H) = C. Thus, for ¢ = {¢™} € F(#) and ¥ = {$”} €
F(#H), the inner product of ¢ and 1 is given by

o]

(2.4) (& W)z = D_ (6", ™ )yen.

n=0
Let us introduce another Fock space over ‘H, namely white noise Fock
space, as follows. Let I'™(#H) be the Hilbert space of S,H™ equipped
with the inner product

(25) (¢(n)’ ¢(n))F(")(H) = n’(¢(n), "p(n))'H(")’ ¢(n), 1/)(") € SnH(n)
The white noise Fock space over H is defined by

(2.6) T(H) = @2, L™ (H).
Notice that for ¢ = {¢™} € T(H) and ¢ = {™} € ['(H) we have

o0

(&, V)ray = Z(¢<n),¢("))r<n)(m

n=0

x
(2.7) = > (@™, ).

n=0
For the details we refer to [4], Section A.2.

From now on we confine ourselves to the case of H = L%*(R%; dz). If

H = L*(RY), then ®"_, L*(R?) = L*(R%") and S(®"L*(R%)) = LZ(R™),
where L? is the set of functions in L? which are invariant under per-
mutations of the variables. Let S(RY) and &'(R?) be the Schwartz
space and the space of tempered distributions [8]. For f € S(R?) and
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¥ = {y™} € F(L?) (I(L?)), the annihilation operator a(f) and the
creation operator a*(f) are defined by

(28) (a(f)'lp)n(kl’ Tt kn) = vn+ 1 "y m')"w(n+l)(k’ kl, Tt >kn)dk,
(2.9Xa" (N))" (k1 -+~ k) = % Z Flep ™D (k- iy k),

where ]51‘ means that k; is omitted.

A vector ¥ = {¥™} € F(L?) for which (™ = 0 for all but finitely
many 7 is called a finite particle vector. Denote by Fy the set of finite
particle vectors. Put

Ds = {¢ ¢ = {9} € Fop,v™ € S(R™") for any n}.
For each p € RY, we define an operator a(p) on F(L?)(I'(L?)) with
domain Dg by

(a(p)¢)(n)(kl, s k) = \/mw("“)(p, ki, -+ kn).
The adjoint of the operator a(p) is given formally by

* n 1 - n—
((L (P)¢)( )(kh te 7kn) = % Z 5(]9—’“1)"/’( 1)(k:h Tt 1kl—1a kl+17 Tt kn),
=1

which is a well-defined quadratic form on Dg x Dg. One can check that,
if w belongs to S'(R%™+m)) the integral (1.1) is defined as a quadratic
forms on Dg x Dg. See (8], Section X.7 for the details.

Let A be any self-adjoint operator on H with domain of essential self-
adjointness D. Let Dy = {3 € Fy : 9™ € @"D for each n} and define
dT'(A) on Dy N F™(H) as

(2.10) dI'(A)
= A®1® - ®1+10A4A® - ®1l+ --+1®1® - ®1® A

Then dI'(A) is essentially self-adjoint on D, [8]. dI'(A) is called the
second quantization of A. The number operator N is defined to be
N =dI'(1), which can be written as

(2.11) N = g a*(p)a(p) dp.
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For 7 € R, let

(2.12) N= [, (p)"a" (p)a(p) dp,
where u(p) = (p* + 1)//2. One can check that N, is the second quanti-
zation of the multiplication operator u(p) on L*(R?) [3, §].

We now collect some more or less well-known results about kernel op-
erators on Fock space. The followings are the results on kernel operators
associated to L?-kernels:

THEOREM 2.1 ([8], Theorem X.44). Letn; and ny be nonnegative in-
tegers and suppose that w € L*(R¥™+™))  Then there is an operator
Tw on F,(L*(R?)) so that Ds C D(Tyw) is a core for Ty and

(a)

m

n2
TW = ./Rd( )w(k17 T k“nnpl’ tT ’an)(Ha*(kz))(Ha(pz))dkdp

i=1 i=1
as quadratic forms on Dg x Ds.

(b)

n

Ty = [ Wl e pad (o ) [ Jats)dkdp
e i=1

i=1

as quadratic forms on Dg x Dg.
(¢) (N +1)"™/2Ty (N +1)"/2 is a bounded operator on F(L?) and the
bound

IV + )™ 2T (N + 1)) < Cln, n) | W12
holds for some constant C(ny,ns).
(d) If w, — w in L2(R¥™+™)) then Ty, — Tw strongly on Ds.
(e) Fo is contained in D(Tw), and on vectors in Fo, Tw is given by the
explicit formula

(Twyp) =) = K(1,m1,m9) X
S d w(kla e 7k'n1’p1> e )pnz)"/)(l)(pla * y Pngs kl) e ,kn1+l-n2)dp
nY
and
(Tw)™ =0 if n<n
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l!(l+n1—n2)!) 1/2

where S is the symmetrization operator and K (I, n;,n3) = ( (=

The following is a result on kernel operators associated to more general
kernels:

THEOREM 2.2 ([3], Proposition 1.2.3 (a)). Letw(k,p) € S'(Rdm+m))
so that w is a densely defined bilinear form on S(R%™) x S(R¥"). Denote
by ||w|| the norm of the operator w from L*(R%2) to L*(R%") given by
the kernel w(k,p). Let Tw be the bilinear form given by (1.1). Then
there exists a constant C(ny,ny) such that the bound

Q¥ + 1) /2T (N, 4 1)/

< Clrmyma)I([ T utk) ™) (I o))l

J=1

holds.

3. Kernel operators : Main results

In this section, we reformulate and extend the results in Theorem 2.1
and Theorem 2.2 in the framework of white noise analysis. First let us
recall basic facts of white noise analysis. The inner product of L*(R¢; dz)
is denoted by (-, -)2, the corresponding norm by | - |o. Let (S'(R%), B, 1)
be the Gaussian measure on S’(R¢) with its characteristic function on
S(R?) given by

[ expli < 2,6 >)duta) = emn(—fe), € e S@),
S'(R9)

where < -, > is the dual pairing. Let (L?) = L?(S'(R%), ir). Recall the
definition of I'(L?) in (2.6). By the chaos decomposition([4, Proposition
2.6]), every ¢ € (L?) is in one to one correspondence with a sequence
¢ = {$™} in T(L?), and lllL2y = |IQZ~S|IF(L2). Thus one may identify (L?)
with T'(L?).
Let H be the self-adjoint extension of the differential operator
~A+ |z +1

on L*(R% dz) with domain S(R?). Notice that H > 2. By |-|s,, p€R,
we denote the norm given by |H? - |;. More generally, for a function f®
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on R%, [ € N, we denote by [f¥|,,, p € R, the norm |(H?)® f®|,. Let
(8) C (L) ~I(L?) c (8)*

be the Gelfand triple [4, Chapter 4.A]. Any 9 € (S) has a chaos de-
composition ¢ = {1)";1 € N}, where each ¥®, | € N, belongs to the
symmetric Schwartz space S;(R?) [4, Proposition 4.3]. Again we identify
(S) with the space of such sequences. Notice that 1 = {1} belongs to
(S) if and only if for any p > 0

(3.1) 1gllz, =D U5, < co.

1=0
See [4, Proposition 4.2]. We remark that the inclusions
(3.2) Ds C (S) C (IL*) ~T(L? c F(I?

hold and the embeddings are dense.

Let us return to the discussion of kernel operators. Denote the set
of continuous linear map from a topological space X to a topologi-
cal space Y by L(X,Y). Recall that W € L(L*(R%2), L*(R™)) is
Hilbert-Schmidt operator if and only if there is a kernel function w €
L2(R¥m+m2)) with

63 WH®= [ wkpiGd  fe DR
Moreover the Hilbert-Schmidt norm of W equals to the L?-norm of the
kernel function w [8, Theorem VI1.23]. Therefore one can see that Theo-
rem 2.1 is the result for kernel operators associated with Hilbert-Schmidt
operators from L%(R%2) to L2(R%™),

In order to describe the main idea in this paper, consider the operators
N, defined in (2.12). N, can be written formally by

Ny = [ (B 417500k — p)(o? + 170’ (k)a(p) dhdp.
R

Thus, in a sense N; 7 > 0, can be viewed as a kernel operator asso-
ciated with the kernel w(k,p) = (k? + 1)7/45(k — p)(p® + 1)"/4, which is
not in L?(R??). However the kernel defines a continuous linear map from
S(R?) to L?(R?) via the expression (3.3).

Let W be a continuous linear map from S(R%%) to L%(R™), i.e.,
W € L(S(R?), L2(R%™)). Then there exist constants p > 0 and C' > 0
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such that
(3.4) W £l < CI(HP)®™ fl  f € SR™).

See [8, Chapter V]. Let W € L£(S(R%*), L2(R%™)) be given. For any
1 > ny, S(R¥) ~ S(R¥™) @ S(R¥-)), and so W ®1¢~™) is a continuous
linear map from S(R¥) to L?(R¥—™+m)) where 1¢-) is the identity
map on L?(R¥-2)),

The following is our main result:

THEOREM 3.1. Let n; and ny be non-negative integers and suppose
that a continuous linear map W from S(R%) to L*(R%™) is given. For
any ¢ = {¢} € (S), let Tty be defined by

(3.5) (Twy)l™*™) = K(l,ny,n9)S(W @ 1¢m)pl) | [ >y,
(Tw)™ = 0, n<n,

where S = S|_,4n, Is the symmetrization operator and K(l,ny,ny) is
the constant given in Theorem 2.1 (e). Then the following results hold:

(a) Ty becomes a continuous linear map from (S) to (L?). Thus Tw

is an unbounded linear operator on I'(L?) (and so F(L?)) with domain

(S).

(b) If the adjoint W* of W defines a continuous linear map from S(R%)

to LX(R), then Ty is also continuous map from (S) to (L?). In this
case Ty~ = (Tw)* on (S), and so Ty is closable.

(c) Let p be any positive constant satisfying (3.4). Then Ty (dT'(H?)) /2
(N 4 1)"™/2 is a bounded operator on F(L?)), and the bound

| Tow (dT (H?))™™*(N + 1)-m/2||c(f(L2),f(L2))
< Cny, o) [W(HP)®™ || o2 (etne), r2mem)

holds for some constant C(ny,ny). The same result as above holds on
(L?) if one replaces Ty (dU(H?))™™/3(N + 1)™™/2 by Ty (dT'(H?))™™/2
(N + 1)"™/2(N + 1)~ (m-n2)/2,

REMARK 3.2. (a) If W € L(S(R%2), L}(R%™)) is defined by the ker-
nel w(k,p) via the expression (3.3), then Ty can be expressed as the
integral (1.1) as a bilinear form (S) x (S).

(b) Theorem 3.1(c) is the result analogous to Theorem 2.2 [3, Proposi-
tion 1.2.3 (a)].
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Proof of Theorem 3.1. (a) For any ¥ = {4} € (S), it follows from
(3.5) and (3.4) that
[(Tw)=m2mly < K (1, ma,ma) (W @ 14790},
(3.6) < K (1 ma, mg) | W(HP)®™ || |(HP)"™ @ 107)3 0.

Notice that K (1, ny,n2)?* < I™(l + n;)™. Since H > 2, we have that
(77 © 140, < [(B) 0,
Thus it follows from (3.6) that
ITwdlltsy < CD (1—ne+n) 21+ )" O,

>ns
Clivll3;
for some p > p. This proves the part (a).

(b) For given | > ny, let f € L*R%) and g € S(R¥~™*™)). Using
the fact K(I,n1,n2) = K(I — na + ny,ng,n;) and S? = S, we have

K(l’ i, n2)(S(W ® 1(!‘n2))Sf’ 9)2

(3.7) = K(l — ng+ ny,ng,my) (Sf, S(W* @ 107™))Sg),.
Thus, it follows from the above relation that (7w)* = Tw- on (S). This

proves the part (b).
(c) Since each 9" belongs to S;(R%), we have

(HP)®™ @ 1)y 0E = (0, (H?)®™ @ 1¢7)y0),
(3.8) — (¢(l)’ S((H?)®™ @ l(l—ng)),(/)(z))?.

For any j € {1,2,---, l}, denote by H; the operator H acting on
L*(RY,dz;), i.e., L*(R?)- space with z;-variable. For any A = {i1,13,- -,
i} C {1,2,--+, 1}, i; < ik if j < k, we write for a sake of brevity that

IA

(H2p)®A:1@...®HZP®1®...®Hiip®1®...®[{i2£®1®...®1_
Then it can be checked that

S HZp)@ng ® l(l—nz))S _ (l - Tlg)!’ng! H2p oA
Al
) A:|Al=ny

(3:9) (dr ()™,

= Al
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where the sum is taken over the subsets of {1,2, - - - , [} with no-elements.
By substituting (3.9) into (3.8), it follows from (3.6) that

|(Twy) ¢}y
_ 1/2

o (L) pwenyomy ey,
(l - 'ng)'

(B10) < Clm,m)WCHP)™] (N + DA ()20,

Thus the first part of (c) follows from the above estimate. And
[T tlibzny = 3 (0 = no+n)! [(Twgp)

I>ny
The second part of (c) follows from (3.10) and the above equality. This
completes the proof of the theorem. a

Next, let us consider optimal conditions on kernels so that the corre-
sponding kernel operators are densely defined operators on Fock spaces
F(L*(RY)) and T'(L*(R?)). For any dense subset D in L%(R?), denote
by D™ the n-fold symmetric algebraic tensor product of D. For a given
dense subset D C L*(R?), let

(3.11) FoD)={f=(f")eF: f™ e DM, neN}

Denote by £(D) the algebra generated by the exponential vectors e(f), f
€ D, where for f € D
=1
— 21 r@n
(3.12) em—gmf.

Then Fy(D) and E(D) are dense in F(L?(R%)) and also in T'(L?(RY)).

THEOREM 3.3. Let n; and ny be nonnegative integers. For a dense
subset D C L*(R%), let D™) be the ny-fold algebraic tensor product of
D. Suppose W be an unbounded operator from L*(R%) to L*(R™)
with domain D™). For any ¢ = {¢/"} € Fo(D), define Twi) by the
expression (3.5). Then the following results holds:

(a) Tw is well-defined on Fo(D). Thus Tw becomes an unbounded op-
erator on F(L*(R?)) and also on ['(L*(R?)) with domain Fo(D).

(b) Tw is well-defined on £(D). Thus Tw becomes an unbounded oper-
ator on F(L*(R?)) and also on T'(L*(R?)) with domain (D).

(c) Suppose that W* is well-defined on D™, i.e., D'™) C D(W*). Then
Tw+ C (Tw)*. Thus Ty is closable.



Kernel operators on Fock space 537
Proof. (a) Notice that for v = S(fifa--- fi), | =ng
S(W ® l(l_nz))d)(l) = Z W(fw(l) e fw(nz))fﬂ(n2+1) v f7r(l):
TeS(l)

where S(!) is the permutation group of {1,---1}. Since each W (frq---
Fr(ny)) belongs to L2(R%™), we see that S(W@1(-m))yl) € L2(RAU-m2tm)),
Thus (a) follows from (3.5).

(b) A direct computation shows that for g € D

Tw(e(g)) = Z MS(W@%) . By,

I>ng
and
K(l,m,n n —n
1w (e(@) 3@y < D (1~ na+mn)! ((l,l) 2 ji7 g3 g2
I>ny
< 00.

Notice that ||4|| £z2) < ||¥llr@z?). This proves the part (b).
(c) This follows the method similar to that used in the proof of the
part (b) of Theorem 3.1. O

In the rest of the paper, we consider the class of kernel operators
associated with bounded operators from L?(R%*?) to L%(R%). In this
case we have the results analogous to Theorem 2.1.

THEOREM 3.4. Let n; and ny be non-negative integers and let W €
L (L*(R%™), L?(R%)). Let Ty be an unbounded operator on F(L?)
defined as in (3.5). Then the following results hold:
(a) Tw is well-defined on Fy, and leaves Fy invariant, i.e., TwFo C Fo.
(b) (Tw)* = Tw+ on Fy, and so Ty is closable.
(c) If W,, — W in L(L?*(R%=), L*(R%™)), then Ty, — Tw strongly on
Fo.
(d) Tw (N +1)~tm+m2)/2 js o bounded operator on F(L?), and there exists
a constant C(ny,ny) such that the bound

[ Tw (N + 1)~ 2| < C(ny, ma) W |
holds.

Proof. (a) Since S(W ® 1U-m))y) ¢ Fl-mz+m)([2)  the part (a) fol-
lows from (3.5).



538 Changsoo Bahn, Chu! Ki Ko and Yong Moon Park

(b)For any f € L*(R¥) and g € L*(R¥-m+m) | the equality (3.7)
holds. This implies the part (b).
(c) It follows from (3.5) that for any ¥ = {} € Fy

|(Tw, )= +m) — (Typ) ™))y < K (1 ng, na)|Wa — W [0,

Thus (c) follows from the above bound.

(d) If one replace H by 1 and then replace dI'(H%) by (N + 1)
in Theorem 3.1 (c), the part (d) follows from Theorem 3.1 (c) as a
corollary. g
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