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PERMANENTS OF DOUBLY
STOCHASTIC KITE MATRICES

SUK-GEUN HwANG*, JAE-DON LEET AND HONG-SUN PARK

ABSTRACT. Let p, q be integers suchthat 2 < p, ¢ <n,andlet Dy 4
denote the matrix obtained from I, the identity matrix of order n,
by replacing each of the first p columns by an all 1’s vector and by
replacing each of the first two rows and each of the last g—2 rows by
an all 1’s vector. In this paper the permanent minimization problem
over the face, determined by the matrix Dy 4, of the polytope of all
n X n doubly stochastic matrices is treated.

1. Introduction

Let €2,, denote the set of all n x n doubly stochastic matrices. This
set is known to be a convex polytope of dimension n? — 2n + 1 in the
Euclidean n2-space. For an n x n matrix A = [a;;], the permanent of
A, per A, is defined by

perA = Z Q15(1)220(2) * * * Cno(n)s
o€S,

where S, stands for the symmetric group on the set {1, 2, ---, n}.
For an n X n matrix A and for ¢,5 € {1,2,--- ,n}, let A(¢]j) denote
the matrix obtained from A by deleting row ¢ and column j. A square
(0,1)-matrix D = [d;;] is said to have total support if per D(i|j) > 0
for every (i,7) with d;; > 0. For an n x n (0,1)-matrix D with total
support, let

QD) = {X € Qn|X < D},
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where X < D means that every entry of X is less than or equal to the
corresponding entry of D. Then Q(D) forms a face of 2, and every
face of Q,, is defined in this fashion [2]. After the resolution of the
van der Waerden conjecture 4, 5, 16|, there have been made many
efforts to minimize the permanent function over various faces of 2, [3,
6, 8, 9, 10, 11, 12, 13, 14]. Let u(D) denote the minimum permanent
over (D). A matrix A € Q(D) is called a minimizing matriz over
Q(D) if per A = u(D). The set of all minimizing matrices over (D)
is denoted by Min(D). In the literature, the problem of determining
(D) and Min(D) is called the permanent minimization problem over
(D). The permanent minimization problem for any (0, 1)-matrix of
order n of which n—2 of the rows are all 1’s vectors has been studied by
Minc[11], and the problem for staircase matrices has been investigated
by Hwang[8], where a staircase matrix is a (0, 1)-matrix of the form

Dyy Dig -+ Dy
D3y Doy -+ Dy
Dy Dy --- Dk

with D;; being a zero matrix if ¢ < j, and an all 1’s matrix if z > j.
Let

1110 00
11]01 00
(1) Ch=111100 --- 10
1100 01
11|11 - 11
11|11 - 1 1]

be of order n, and for an integer p with 2 < p <n —1, let Cy, , denote
the matrix obtained from C,, by replacing each of the first p columns
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by an all 1’s vector. The permanent minimization problem for C,, and
Chn,p has been done by Song [13, 14). Let n be a fixed positive integer.
For positive integers p,q with p,g < n, let D, , denote the matrix
obtained from C,, by replacing each of the first p columns and each of
the last ¢ rows with an all 1’s vector. In order to have this replacement
make sense we assume that p,q > 2. We call Dy, , a kite matriz of type
(p,q). Note that the matrices C, and C, ; are kite matrices of type
(2,2) and (p, 2) respectively. In this paper we deal with the permanent
minimization problem over the faces of 2,, determined by kite matrices.
Note that, if p+ ¢ > n + 1, then Dy, is a staircase matrix, and the
permanent minimization problem over Q(D)p, q) reduces to the work in
[8]. So, we assume that p + g < n in the sequel.

2. Preliminaries

In the sequel, let I, denote the identity matrix of order n and let
Jm,n denote the m x n matrix of 1’s. The matrix J, , is denoted by
Jn for brevity. An n x n matrix is called fully indecomposable if it does
not contain an s X (n — s) zero submatrix. We start this section with
some useful lemmas.

LEMMA 2.1 (7). Let D = [d;;] be a fully indecomposable (0,1)-
matrix and let A = [a;;] € Min(D). Then A is also fully indecompos-
able, and moreover, for (i,j) with d;; = 1, per A(i|j) > per A with
equality if a;; > 0.

LEMMA 2.2 [11]. Let D and A = [ ay,--- ,a,] be the same as in
Lemma 2.1. If dy = --- = d, for some r < n, then the matrix obtained
from A by replacing each of the first r columns by the average of
aj,- -+ ,a, is also a matrix in Min(D). A similar statement holds for
TOWS.

The following Lemma is a direct consequence of Lemma 2.3 of [10]
and we omit the proof.

LEMMA 2.3. Let D = [d;;] be a (0,1)-matrix with total support
of which the first p columns are identical and di1 = --- = d1, =
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l,dipt1=-+--=d1,n =0. Then
—~1\P!
u(D) = (p—z;—) w(D(L)).

LEMMA 2.4 [13]. Let C,, be the kite matrix of type (2,2) defined in
(1). If n > 6, then

n— _Ayn—4
(cn) = A= B2

which is attained uniquely at the matrix

1l Jpo2 (n—4)I,_2
n—2]| O Jon—2 |’

3. Minimizing the permanent over Q(D, q)

We begin with the cases where n is small.

LEMMA 3.1. Let C, be the kite matrix of type (2,2).
(a) Ifn =4, then

(2) u(Cy) = (160 — 10a + 3)/14 = 0.10277 - - -

where o = 0.30343--- is the the unique real root of the polynomial
equation

(3) 2822 — 2412 4 8z — 1 =0,

and the minimum value is attained uniquely at the matrix

a a B8 0
(4) a a 0 8 ’

Y ¥ o «

T Yy a a

where 3 =1 —2a and v = (1 — 2a)/2.
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(b) Ifn=2>5, then
(5) (Cs) = (265002 + 147a — 9)/121 = 0.04781 - - -

where o = 0.29513 - - - is the unique real root of the polynomial equa-
tion

(6) 4423 — 1622 + 9z — 1 =0,

and the minimum value is attained uniquely at the matrix

a a g 0 0
a a 0 B 0
(7N a a 0 0 g},
Y Yy a a a
Y Yy a a a
where 3 =1—2a and v = (1 — 30)/2.
Proof. (a) was proved in [11].
(b) It is proved in [12] that
(8) p(Cs) = (1 — 20)%(1 — 5a + 12a2)/2

where a is the unique real root of the polynomial equation (6) which
is attained uniquely at the matrix in (7). The expression (5) is just a
simplification of (8) taking account of (6). O

We now discuss our main problem of minimizing the permanent over
the face (Dp 4) of Q. Recall that the integers p, g are restricted to,
satisfy p+ q <n and p,q > 2.

THEOREM 3.2. Let p+ g <n and p,q > 2. Then

4(p—1)!(q —1)!
pP1lqa-1

.U'(DP,Q) = f(p, q)
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where

(4 1

§(16a2—10a+3), lfp-{-q:n’
1

f(p,g) =  57(26507° + 1477 -9), ifp+g=n~—1,

2 _ _ 9\ym—2
(m 1)(77112)  ifpig<n—2
\ mm

with o and v being the unique real roots of the polynomial equations
(3) and (6) respectively, and m=n—p—q+ 2.

Proof. We prove the theorem by induction on p+¢q. If p+ q = 4,
then p=¢ =2 and D, 4 = C,. Since

Ap—Dig-1! _4@2-D2-1)! _
pp—qu—-l 2191

and p(C,) = f(2,2), our theorem holds for this case, and the induction
starts. Suppose that p + ¢ > 5 and that the theorem holds for p +
g — 1. Without loss of generality we can assume that p > 3. Let

E = Dp4(1]1). Then E = D, withr =p—1 a.nd s = ¢. By induction
hypothsis , we have

wpy =AM Dlee )

pr—1 s—
We claim that f(r,s) = f(p,q). This equality is clear for the cases
p+qg=norp+q=n—1,because p+¢=nifandonlyifr+s=n-1=
(order of E) and p+ g =n — 1 if and only if » + s = n — 2 = (order of
E) —1. The equality for the case p+ ¢ < n — 2 is also evident because
n-1)—r—s+2=n—p—q+2=m. Since

i(Dpg) = (’igi)p_lu(m,

by Lemma 2.3, we finally have

f(p,a),

p—l)"‘l 4p—2! (@-D!e .\ _ 4= 1 —1)

p (p—1)p=2 qo7? pp—lqa—1
and the proof is complete. O

WDp) = (
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THEOREM 3.3. Let p+ q < n and p,q > 2. Then Q(D, ) has a
unique minimizing matrix A. If p+q>n — 1, then

1 -
~Jp_ O O
( D p—2,p
A= ?;"‘Jm,,, (1-20)l, O |,
2-2ka 2a 1
—J —Jom .
L pq q,p q q, q .9 2_

where k =2 ifp+q=n,and k=3 ifp+q=n—1, and «a is the
. unique real root of the equation (3) if p+ q = n, and of the equation
(6) ifp+gq=n—1. Ifp+q=n—2, then

1 -
A= ..2_Jm’p __m;2[m o) ,
mp m
2 1
| o E&‘Jq,m an,q—2J

wherem=n—p—q+ 2.

Proof. Again we use induction on p+ g. The case p+ q¢ = 4 is done
in Lemmas 2.4 and 3.1. So, we let p+ ¢ > 5. We may assume that
p > q without loss of generality. Then p > 3. Suppose first that ¢ = 2.
Then m = n —p. If m = 2, then Q(D,2) has a unique minimizing
matrix by the works in [11]. Since the matrix

- 1 -
= 19)
P ¥4 ¥4
?—CEJQ,,, (1 — 2a)I2 ,
p
1-2
hy  al

with o being the unique real root of equation (3), has permanent
(16a? — 10a + 3)/14, this matrix is the unique minimizing matrix and
our theorem holds for this case. If m > 3, then the proof reduces to
the work in [14]. Finally, suppose that ¢ > 3. Let E = Dp, 4(1|1). Then
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E = Dyp_14. By induction, Q(FE) has a unique minimizing matrix G
Ifp+g>n—1,then (p—1)+¢g=(n-1)—1, and by induction

;_l__lJp~3m—1
2a

p—1

2 - 2ka
. P—4q

kap_l

JQyp_l

o o
(1 - 2a)Ik O
20 1
?J‘Lk EJQ7(I"2

where a and k are the same numbers stated in the theorem. If p+¢ <
n — 2, then (p — 1) + ¢ < (n — 1) — 2, and by induction

2
= Jom
mqg"?

O

1
—q-JQ1q_2 i

wherem = (n—1)—(p—1)—q+2 = n—p—q+2. Let A € Min(D,, ;) and
let A; = A(%JPGBIn_p). Then by Lemma 2.2, we have A; € Min(D,, ;).

Let As = Al(;;Lle

p—1 p—1
per B = (p—f_——l—) per Ai(1]1) = (p—f—l) per

Thus, by Lemma 2.3, we have that per B = u(F) and B € Min(FE),
~ and hence that B = G. Therefore A has the form

p
A =
’ (p—l

A O o
A= A21 (1—2a)Ik 0 ,
2a 1
A —J —Jga—
| 31 q q.k q 9,9 2_

ifp+g>2n—-1,0r

®I,_p) and let B = A(1|1). Then B € Q(FE) and

)p—l #(Dp,q)-
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[ A1 0] O
m—2
A= | A1 - I, 0 ,
2 1
—Jom  —Jgo—
_Om quq, Pl 2 |

if p+qg < n—2 A similar argument applied to' Dy q(n|n) assures
that Ay = (1/p)Jp—2,p, A21 = (20/p)Jkp f p+q > n —1, and
Ay = (2/mp)Jmp if p+q < n—2. Then Az = ((2 — 2ka)/pq)Jqp
automatically, and the proof is complete. a
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