PERMANENTS OF DOUBLY STOCHASTIC KITE MATRICES

Suk-Geun Hwang*, Jae-Don Lee+ and Hong-Sun Park

ABSTRACT. Let p,q be integers such that $2 \le p, q \le n$, and let $D_{p,q}$ denote the matrix obtained from I_n , the identity matrix of order n, by replacing each of the first p columns by an all 1's vector and by replacing each of the first two rows and each of the last q-2 rows by an all 1's vector. In this paper the permanent minimization problem over the face, determined by the matrix $D_{p,q}$, of the polytope of all $n \times n$ doubly stochastic matrices is treated.

1. Introduction

Let Ω_n denote the set of all $n \times n$ doubly stochastic matrices. This set is known to be a convex polytope of dimension $n^2 - 2n + 1$ in the Euclidean n^2 -space. For an $n \times n$ matrix $A = [a_{ij}]$, the permanent of A, per A, is defined by

$$\operatorname{per} A = \sum_{\sigma \in S_n} a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n\sigma(n)},$$

where S_n stands for the symmetric group on the set $\{1, 2, \dots, n\}$. For an $n \times n$ matrix A and for $i, j \in \{1, 2, \dots, n\}$, let A(i|j) denote the matrix obtained from A by deleting row i and column j. A square (0,1)-matrix $D = [d_{ij}]$ is said to have total support if per D(i|j) > 0 for every (i,j) with $d_{ij} > 0$. For an $n \times n$ (0,1)-matrix D with total support, let

$$\Omega(D) = \{ X \in \Omega_n | X \le D \},$$

Received January 6, 1998.

¹⁹⁹¹ Mathematics Subject Classification: 15A05.

Key words and phrases: permanent, doubly stochastic matrix.

^{*}Supported in part by Ministry of Education through research fund, BSRI 96-1402 and in part by TGRC.

⁺Supported by the Taegu University research grant, 1996.

where $X \leq D$ means that every entry of X is less than or equal to the corresponding entry of D. Then $\Omega(D)$ forms a face of Ω_n and every face of Ω_n is defined in this fashion [2]. After the resolution of the van der Waerden conjecture [4, 5, 16], there have been made many efforts to minimize the permanent function over various faces of Ω_n [3, 6, 8, 9, 10, 11, 12, 13, 14]. Let $\mu(D)$ denote the minimum permanent over $\Omega(D)$. A matrix $A \in \Omega(D)$ is called a minimizing matrix over $\Omega(D)$ if per $A = \mu(D)$. The set of all minimizing matrices over $\Omega(D)$ is denoted by $\mathbf{Min}(D)$. In the literature, the problem of determining $\mu(D)$ and $\mathbf{Min}(D)$ is called the permanent minimization problem over $\Omega(D)$. The permanent minimization problem for any (0,1)-matrix of order n of which n-2 of the rows are all 1's vectors has been studied by $\mathbf{Min}(11)$, and the problem for staircase matrices has been investigated by $\mathbf{Hwang}[8]$, where a staircase matrix is a (0,1)-matrix of the form

$$\begin{bmatrix} D_{11} & D_{12} & \cdots & D_{1k} \\ D_{21} & D_{22} & \cdots & D_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ D_{k1} & D_{k2} & \cdots & D_{kk} \end{bmatrix}$$

with D_{ij} being a zero matrix if i < j, and an all 1's matrix if $i \ge j$. Let

(1)
$$C_{n} = \begin{bmatrix} 1 & 1 & 1 & 0 & \cdots & 0 & 0 \\ 1 & 1 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 1 & 0 & 0 & \cdots & 1 & 0 \\ \hline 1 & 1 & 0 & 0 & \cdots & 0 & 1 \\ \hline 1 & 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 1 & 1 & 1 & \cdots & 1 & 1 \end{bmatrix}$$

be of order n, and for an integer p with $2 \le p \le n-1$, let $C_{n,p}$ denote the matrix obtained from C_n by replacing each of the first p columns

by an all 1's vector. The permanent minimization problem for C_n and $C_{n,p}$ has been done by Song [13, 14]. Let n be a fixed positive integer. For positive integers p,q with $p,q \leq n$, let $D_{p,q}$ denote the matrix obtained from C_n by replacing each of the first p columns and each of the last q rows with an all 1's vector. In order to have this replacement make sense we assume that $p,q \geq 2$. We call $D_{p,q}$ a kite matrix of type (p,q). Note that the matrices C_n and $C_{n,p}$ are kite matrices of type (2,2) and (p,2) respectively. In this paper we deal with the permanent minimization problem over the faces of Ω_n determined by kite matrices. Note that, if $p+q \geq n+1$, then $D_{p,q}$ is a staircase matrix, and the permanent minimization problem over $\Omega(D_{p,q})$ reduces to the work in [8]. So, we assume that $p+q \leq n$ in the sequel.

2. Preliminaries

In the sequel, let I_n denote the identity matrix of order n and let $J_{m,n}$ denote the $m \times n$ matrix of 1's. The matrix $J_{n,n}$ is denoted by J_n for brevity. An $n \times n$ matrix is called *fully indecomposable* if it does not contain an $s \times (n-s)$ zero submatrix. We start this section with some useful lemmas.

LEMMA 2.1 [7]. Let $D = [d_{ij}]$ be a fully indecomposable (0,1)-matrix and let $A = [a_{ij}] \in \mathbf{Min}(D)$. Then A is also fully indecomposable, and moreover, for (i,j) with $d_{ij} = 1$, per $A(i|j) \ge \text{per } A$ with equality if $a_{ij} > 0$.

LEMMA 2.2 [11]. Let D and $A = [\mathbf{a}_1, \dots, \mathbf{a}_n]$ be the same as in Lemma 2.1. If $\mathbf{d}_1 = \dots = \mathbf{d}_r$ for some $r \leq n$, then the matrix obtained from A by replacing each of the first r columns by the average of $\mathbf{a}_1, \dots, \mathbf{a}_r$ is also a matrix in $\mathbf{Min}(D)$. A similar statement holds for rows.

The following Lemma is a direct consequence of Lemma 2.3 of [10] and we omit the proof.

LEMMA 2.3. Let $D = [d_{ij}]$ be a (0,1)-matrix with total support of which the first p columns are identical and $d_{11} = \cdots = d_{1,p} =$

 $1, d_{1,p+1} = \cdots = d_{1,n} = 0.$ Then

$$\mu(D) = \left(\frac{p-1}{p}\right)^{p-1} \mu(D(1|1)).$$

LEMMA 2.4 [13]. Let C_n be the kite matrix of type (2,2) defined in (1). If $n \geq 6$, then

$$\mu(C_n) = \frac{2(n-3)(n-4)^{n-4}}{(n-2)^{n-1}}$$

which is attained uniquely at the matrix

$$\frac{1}{n-2} \begin{bmatrix} J_{n-2,2} & (n-4)I_{n-2} \\ O & J_{2,n-2} \end{bmatrix}.$$

3. Minimizing the permanent over $\Omega(D_{p,q})$

We begin with the cases where n is small.

LEMMA 3.1. Let C_n be the kite matrix of type (2,2).

(a) If n=4, then

(2)
$$\mu(C_4) = (16\alpha^2 - 10\alpha + 3)/14 = 0.10277 \cdots$$

where $\alpha = 0.30343 \cdots$ is the the unique real root of the polynomial equation

$$28x^3 - 24x^2 + 8x - 1 = 0,$$

and the minimum value is attained uniquely at the matrix

$$\begin{bmatrix}
\alpha & \alpha & \beta & 0 \\
\alpha & \alpha & 0 & \beta \\
\gamma & \gamma & \alpha & \alpha \\
\gamma & \gamma & \alpha & \alpha
\end{bmatrix},$$

where $\beta = 1 - 2\alpha$ and $\gamma = (1 - 2\alpha)/2$.

(b) If n=5, then

(5)
$$\mu(C_5) = (2650\alpha^2 + 147\alpha - 9)/121 = 0.04781 \cdots$$

where $\alpha = 0.29513 \cdots$ is the unique real root of the polynomial equation

(6)
$$44x^3 - 16x^2 + 9x - 1 = 0,$$

and the minimum value is attained uniquely at the matrix

(7)
$$\begin{bmatrix} \alpha & \alpha & \beta & 0 & 0 \\ \alpha & \alpha & 0 & \beta & 0 \\ \alpha & \alpha & 0 & 0 & \beta \\ \gamma & \gamma & \alpha & \alpha & \alpha \\ \gamma & \gamma & \alpha & \alpha & \alpha \end{bmatrix},$$

where $\beta = 1 - 2\alpha$ and $\gamma = (1 - 3\alpha)/2$.

Proof. (a) was proved in [11].

(b) It is proved in [12] that

(8)
$$\mu(C_5) = (1 - 2\alpha)^2 (1 - 5\alpha + 12\alpha^2)/2$$

where α is the unique real root of the polynomial equation (6) which is attained uniquely at the matrix in (7). The expression (5) is just a simplification of (8) taking account of (6).

We now discuss our main problem of minimizing the permanent over the face $\Omega(D_{p,q})$ of Ω_n . Recall that the integers p, q are restricted to satisfy $p+q \leq n$ and $p,q \geq 2$.

THEOREM 3.2. Let $p + q \le n$ and $p, q \ge 2$. Then

$$\mu(D_{p,q}) = \frac{4(p-1)!(q-1)!}{p^{p-1}q^{q-1}}f(p,q)$$

where

$$f(p,q) = \left\{ egin{aligned} rac{1}{14}(16lpha^2 - 10lpha + 3), & ext{if } p+q = n, \ & rac{1}{121}(2650\gamma^2 + 147\gamma - 9), & ext{if } p+q = n-1, \ & rac{2(m-1)(m-2)^{m-2}}{m^{m+1}}, & ext{if } p+q \leq n-2, \end{aligned}
ight.$$

with α and γ being the unique real roots of the polynomial equations (3) and (6) respectively, and m = n - p - q + 2.

Proof. We prove the theorem by induction on p + q. If p + q = 4, then p = q = 2 and $D_{p,q} = C_n$. Since

$$\frac{4(p-1)!(q-1)!}{p^{p-1}q^{q-1}} = \frac{4(2-1)!(2-1)!}{2^12^1} = 1$$

and $\mu(C_n)=f(2,2)$, our theorem holds for this case, and the induction starts. Suppose that $p+q\geq 5$ and that the theorem holds for p+q-1. Without loss of generality we can assume that $p\geq 3$. Let $E=D_{p,q}(1|1)$. Then $E=D_{r,s}$ with r=p-1 and s=q. By induction hypothesis, we have

$$\mu(E) = \frac{4(r-1)!(s-1)!}{r^{r-1}s^{s-1}}f(r,s).$$

We claim that f(r,s) = f(p,q). This equality is clear for the cases p+q=n or p+q=n-1, because p+q=n if and only if r+s=n-1= (order of E) and p+q=n-1 if and only if r+s=n-2= (order of E) -1. The equality for the case $p+q \le n-2$ is also evident because (n-1)-r-s+2=n-p-q+2=m. Since

$$\mu(D_{p,q}) = \left(\frac{p-1}{p}\right)^{p-1} \mu(E),$$

by Lemma 2.3, we finally have

$$\mu(D_{p,q}) = \left(\frac{p-1}{p}\right)^{p-1} \frac{4(p-2)!}{(p-1)^{p-2}} \frac{(q-1)!}{q^{q-1}} f(p,q) = \frac{4(p-1)!(q-1)!}{p^{p-1}q^{q-1}} f(p,q),$$

and the proof is complete.

THEOREM 3.3. Let $p+q \leq n$ and $p,q \geq 2$. Then $\Omega(D_{p,q})$ has a unique minimizing matrix A. If $p+q \geq n-1$, then

$$A = \begin{bmatrix} \frac{1}{p} J_{p-2,p} & O & O \\ \frac{2\alpha}{p} J_{m,p} & (1-2\alpha) I_m & O \\ \frac{2-2k\alpha}{pq} J_{q,p} & \frac{2\alpha}{q} J_{q,m} & \frac{1}{q} J_{q,q-2} \end{bmatrix},$$

where k=2 if p+q=n, and k=3 if p+q=n-1, and α is the unique real root of the equation (3) if p+q=n, and of the equation (6) if p+q=n-1. If p+q=n-2, then

$$A = egin{bmatrix} rac{1}{p} J_{p-2,p} & O & O \ rac{2}{mp} J_{m,p} & rac{m-2}{m} I_m & O \ O & rac{2}{mq} J_{q,m} & rac{1}{q} J_{q,q-2} \end{bmatrix},$$

where m = n - p - q + 2.

Proof. Again we use induction on p+q. The case p+q=4 is done in Lemmas 2.4 and 3.1. So, we let $p+q\geq 5$. We may assume that $p\geq q$ without loss of generality. Then $p\geq 3$. Suppose first that q=2. Then m=n-p. If m=2, then $\Omega(D_{p,2})$ has a unique minimizing matrix by the works in [11]. Since the matrix

$$\left[egin{array}{ccc} rac{1}{p}J_{p-2,p} & O \ rac{2lpha}{p}J_{2,p} & (1-2lpha)I_2 \ rac{1-2lpha}{p}J_{2,p} & lpha J_2 \end{array}
ight],$$

with α being the unique real root of equation (3), has permanent $(16\alpha^2 - 10\alpha + 3)/14$, this matrix is the unique minimizing matrix and our theorem holds for this case. If $m \geq 3$, then the proof reduces to the work in [14]. Finally, suppose that $q \geq 3$. Let $E = D_{p,q}(1|1)$. Then

 $E = D_{p-1,q}$. By induction, $\Omega(E)$ has a unique minimizing matrix G. If $p+q \geq n-1$, then (p-1)+q=(n-1)-1, and by induction

$$G = egin{bmatrix} rac{1}{p-1}J_{p-3,p-1} & O & O \ rac{2lpha}{p-1}J_{k,p-1} & (1-2lpha)I_k & O \ rac{2-2klpha}{p-q}J_{q,p-1} & rac{2lpha}{q}J_{q,k} & rac{1}{q}J_{q,q-2} \end{bmatrix},$$

where α and k are the same numbers stated in the theorem. If $p+q \le n-2$, then $(p-1)+q \le (n-1)-2$, and by induction

$$G = egin{bmatrix} rac{1}{p-1}J_{p-3,p-1} & O & O \ rac{2}{mp}J_{m,p-1} & rac{m-2}{m}I_m & O \ O & rac{2}{mq}J_{q,m} & rac{1}{q}J_{q,q-2} \end{bmatrix},$$

where m=(n-1)-(p-1)-q+2=n-p-q+2. Let $A\in \mathbf{Min}(D_{p,q})$ and let $A_1=A(\frac{1}{p}J_p\oplus I_{n-p})$. Then by Lemma 2.2, we have $A_1\in \mathbf{Min}(D_{p,q})$. Let $A_2=A_1(\frac{p}{p-1}I_p\oplus I_{n-p})$ and let $B=A_2(1|1)$. Then $B\in \Omega(E)$ and

$$\text{per } B = \left(\frac{p}{p-1}\right)^{p-1} \text{per } A_1(1|1) = \left(\frac{p}{p-1}\right)^{p-1} \text{per } A_1 = \left(\frac{p}{p-1}\right)^{p-1} \mu(D_{p,q}).$$

Thus, by Lemma 2.3, we have that per $B = \mu(E)$ and $B \in \mathbf{Min}(E)$, and hence that B = G. Therefore A has the form

$$A = egin{bmatrix} A_{11} & O & O \ & A_{21} & (1-2lpha)I_k & O \ & A_{31} & rac{2lpha}{q}J_{q,k} & rac{1}{q}J_{q,q-2} \end{bmatrix},$$

if $p+q \ge n-1$, or

if $p+q \leq n-2$. A similar argument applied to $D_{p,q}(n|n)$ assures that $A_{11}=(1/p)J_{p-2,p}, \ A_{21}=(2\alpha/p)J_{k,p}$ if $p+q \geq n-1$, and $A_{21}=(2/mp)J_{m,p}$ if $p+q \leq n-2$. Then $A_{31}=((2-2k\alpha)/pq)J_{q,p}$ automatically, and the proof is complete.

ACKNOWLEDGMENTS. The authors would like to thank the referee for some valuable comments and for pointing out several typographical errors in the original manuscript.

References

- [1] R. A. Brualdi, An interesting face of the polytope of doubly stochastic matrices, Linear and Multilinear Algebra 17 (1985), 5-18.
- [2] R. A. Brualdi and P. M. Gibson, The convex polyhedron of doubly stochastic matrices: I. Applications of the permanent function, J. Combin. Theory (A) 22 (1977), 194-230.
- R. A. Brualdi and B. L. Shader, Minimum permanents on special faces of the polytope of doubly stochastic matrices, Linear Algebra Appl. 201 (1994), 103-111.
- [4] G. P Egoryĉev, Reŝnie problemy van-der-Vardena dla permanentov, Dokl Akad. Nauk SSR 258 (1981), 1041-1044.
- [5] D. I. Falikman, Dokazatel'stvo gipotezy van der Vardena o permanente dvażdy stochasticeskoi matricy, Mat. Zam. 29 (1981), 931-938.
- [6] Ismor Fischer and Suk-Geun Hwang, Certain nonbarycentric cohesive matrices, Linear Algebra Appl. 239 (1996), 185-200.
- [7] T. H. Foregger, On the minimum value of the permanent of a nearly decomposable doubly stochastic matrix, Linear Algebra Appl. 32 (1980), 75-85.
- [8] Suk-Geun Hwang, Minimum permanent on faces of staircase type of the polytope of doubly stochastic matrices, Linear and Multilinear Algebra 18 (1985), 271-306.
- [9] _____, Minimizing the permanent over some faces of the polytope of doubly stochastic matrices, Linear Algebra Appl. 219 (1995), 195-205.
- [10] Suk-Geun Hwang and Sun-Jeong Shin, A faces of the polytope of doubly stochastic matrices associated with certain matrix expansions, Linear Algebra Appl. 253 (1997), 125-140.

- [11] H. Minc, Minimum permanents of doubly stochastic matrices with prescribed zero entries, Linear and Multilinear Algebra 15 (1984), 225-243.
- [12] Seok-Zun Song, Minimum permanents on certain faces of matrics containing an identity submatrix, Linear Algebra Appl. 108 (1988), 263-280.
- [13] _____, Minimum permanents on certain doubly stochastic matrices, Linear Algebra Appl. 143 (1991), 49-56.
- [14] _____, Minimum permanents on certain doubly stochastic matrices II, Linear Algebra Appl. 161 (1992), 265-277.
- [15] R. Sinkhorn and P. Knopp, Concerning nonnegative matrices and doubly stochastic matrices, Pacific J. Math 21 (1967), 343-348.
- [16] B. L. Van der Waerden, Aufgabe 45, Jahresber. Deutch. Math.-Verein 35 (1926), 117.

Suk-Geun Hwang Department of Mathematics Education Kyungpook National University Taegu 702-701, Korea

Jae-Don Lee
Department of Mathematics Education
Taegu University
Taegu 705-714, Korea

Hong-Sun Park Department of Mathematics Graduate School Kyungpook National University Taegu 702-701, Korea