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DECIDABILITY AND FINITE DIRECT PRODUCTS

JOOHEE JEONG

ABSTRACT. A useful method of proving the finite decidability of an
equationally definable class V of algebras (i.e., variety) is to prove the
decidability of the class of finite directly indecomposable members
of V. The validity of this method relies on the well-known result of
Feferman-Vaught: if a class X of first-order structures is decidable,
then so is the class {[[;, Ai | Ai € X (i <n), n € w}. In this
paper we show that the converse of this does not necessarily hold.

1. Introduction

For a class X of algebras of the same type, we let Kg, be the class of
the finite members of X, and let Xp; be the class of directly indecompos-
able members of K. Recall that an algebra A is directly indecomposable
iff it has at least two elements and whenever A = B x C, then either B
or C is the trivial single element algebra.

X is said to be decidable (resp. finitely decidable) if there exists an
algorithm to determine whether a given first-order sentence in the lan-
guage of X has a model (resp. finite model) in X.

The result presented in this paper grew out of an attempt to answer
the following question posed by Stanley Burris:!

If X = Vg, for some (locally finite) variety V, then is Kpy;
necessarily decidable whenever X is decidable?

One of the useful methods of proving the finite decidability of a variety
(i.e., the decidability of the first-order theory of Vg,) is to prove the
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decidability of the class of finite directly indecomposable members of V
[1]. Whether this method always works (in principle) is equivalent to
the Burris’ problem.

For a class D of first-order structures in the same language, we use
the notation

Pea(D) € {[JAi | Ai € D (i < ), n e w}.
i<n
Then the Feferman-Vaught theorem [2] implies
(1) D is decidable = Pg,(D) is decidable.

Let us say that a class X of algebras is closed under direct factors iff
whenever BxC = A € KX then B, C € X. If X is a class of finite algebras
closed under finite direct products and direct factors, then X = Pg,(Kp;)
up to isomorphism since a finite algebra is always isomorphic to a direct
product of some directly indecomposable ones. Thus, in this case, (1)
implies

(2) Xpi is decidable = X is decidable.

In this paper we construct a counterexample X for the converse of (2).

Then D % Xp; will be a counterexample for the converse of (1).
Throughout we use the following notation and terminology: = is the
formal symbol for equality. For a set X, | X| means the cardinality of X.
By a stalk in a direct product [[,.; A;, we mean each factor algebra A;. If
® is a finite set of first-order L-formulas where L is some fixed first-order
language, then A & (resp. \/ ®) is uniquely determined: i.e., the order of
conjuncts (resp. disjuncts) is determined by some fixed enumeration of
all L-formulas. If ® is any set of L-formulas, then Az, ® (resp. V;, ®)
means {A¥ | ¥ C &, |¥] < w} (rtesp. {V¥ | ¥ C &, [¥| <w}). A
finite sequence (ay, ... ,a,) is usually abbreviated as @. If each entry
a; of this sequence is itself a sequence a; : @ — X; with a common
domain « and a codomain X;, then by abuse of notation we may write
a(j), for each j € a, to mean (a;(j),... ,an(j)) € [[e; Xi:- Sometimes
a sequence starts with index 0: e.g., Z = (zo,...,Zp—1). When we
introduce a formula 7(z,,...,2,), 7 is assumed to have free variables
among I,... , I, that are pairwise distinct, unless specified otherwise.
We agree that the product of the empty sequence of natural numbers
is 1, and also agree that the direct product of the empty sequence of
algebras is the trivial algebra consisting of a single element universe.
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2. The Construction

Our language L consists of {f, 0, a,b, c}, where £ is a unary function
symbol and the rest are constant symbols. For each variable z and for
each n > 0, let order(z) =~ n be an abbreviation for the L-formula

(f*(z) = z) A /\ fi(z) % z.
O<i<n

For an L-structure A and u,v € A, let ¥ —v mean the least nonnegative
integer n such that f*(v) = u if such an n exists and w otherwise, and
let |u — v| mean the smaller one among u — v and v — u.

We let order(u) mean the natural number n > 0 such that A |=
order(u) = n if such an n exists and w otherwise. We may say “order of
u” instead of order(u) whenever it is convenient.

DEFINITION 1. We let
def

X = Paa(D),
where D is the class of all L-structures A & (A, £,0,a,b,c) such that
(a) A is finite and its cardinality is p + 1 for some prime number p.
(b) f is a bijection.
(c) £(0) =0.
(d) If |A| = p+ 1 with p € w, then order of z is p for all z € A — {0}.
(e) If a # 0, b+# 0 and ¢ # 0, then |a — ¢c| = n implies |b — c¢| = h(n)
for all n € w where h : w — w is some fixed recursive function (not
depending on A) such that the range of A is nonrecursive.?

By a cycle in A € X, we mean a nonempty subset C C A such that for
all z,y € C there exists n > 0 such that f*(z) =y.
For each k € w, let 7, be a fixed L-sentence saying that

(3) (@a#0)A(b#O0)A(c#0)A(Jb—c =k).
Throughout, we fix the classes X and D, and the map h: w — w.

Note that in each member A of X, f is a bijection satisfying ( f(z) =
m) & (z = 0*), and the universe A is a disjoint union of finitely many
finite cycles. Among these cycles exactly one is a singleton, namely
{0A}. Also note that u — v = ¢ € w implies f?(v) = u but not vice
versa.

2This construction technic is first found in [3].
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PROPOSITION 1. Each member of D is directly indecomposable in
the variety of all L-structures.

Proof. Suppose that B x C = A € D with |A| = p+ 1, where B and
C are L-structures and p is a prime number. Then 04 = (08, 0€) by the
definition of direct products. Thus £B(0B) = 0B and £€(0°) = 0€ follow
from £4(0*) = 0* which holds as A € D. Assume, for the purpose of
getting a contradiction, that |C| > 2 and |B| > 2. Pick ¢ € C — {0°}.
Then the order of (0B, c) in A is the same as the order of ¢ in C, which
is at most |C|. On the other hand, the order of (OB, ¢} must be p because
of definition 1.(d). This gives us a contradiction since

order({0B,c)) < |C| < (p+1)/2 < p = order({0B, c)). O
PROPOSITION 2. D is undecidable.

Proof. For each k € w, 7 has a model in D iff k is in the range of A.
But the range of h is a nonrecursive subset of w. A

PrROPOSITION 3. 7 has a model in K for all k € w.

Proof. Let k € w be given. We will find Ay, A; € Dso that Agx A, =

Ti. Pick any prime p > 2 -k and let Ay o 4, {0,...,p}. Let the

constant symbols be interpreted in Ay and A, so that 040*A1 = (0, 0),
afoXA1 — (0, 1), bAoA = (1,0) and cAo*A1 = (k+1,0). Finally interpret
f so that

n+1 if0<n<p,

fA(n) = tM(n) =40 if n =0,
1 ifn=p
Then it is clear that Ap, A; € D and Ay X A; F 7. O

Now we state our main result as follows.

THEOREM 1. (The Main Result) X = Pg,(D) is decidable while
D is not. Thus the converse of (1) does not hold.

We devote the rest of this paper in proving above theorem. The de-
cidability proof is basically done by the elimination of quantifier method.
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3. Some Lemmas

In this section we work in a sublanguage L° of L, whose symbol set
is {f,0}. Let D° be a class of L%-structures obtained from D by simply

forgetting the interpretations of a,b and c: i.e., D® = def {A|p I A €D}
where A|jo is the Lo-reduct of A, or equivalently, D° is the class of

all L0-structures A & (4, #,0) in which (a)—(d) of definition 1 holds.
Similarly we let K° = {A|50 | A € K}. It is clear that X° = Pg,(D°).

DEFINITION 2. For each A € D° the height of A will mean |A| — 1.
For each M > 0, we let

K s def {A € X°| each stalk of A has height < M},

K2, E{A X | each stalk of A has height > M}.
We define X% ,, and K%, in the obvious way.

Observe that for each prime p and for each n > 0, the number of stalks
of A € K° with height p is n if and only if there are exactly (p+1)" — 1
many elements of A with order p. This is clearly a first-order property,
and we will choose a fixed first-order L%-sentence

width, ~ n

saying this. We also use width, < n as an abbreviation of the sentence
width, =~ 0V ---V width, = n. We define width, < n, width, > n and
width, > n in the obvious way.
We state some useful facts without proof.
LEMMA 1. Let A% [LesAi € KO where each A; € DO.
(a) Given a € A, if we enumerate the elements of the set

{p | p prime, height of A; is p, a(i) # 0%, i € I}

as pi1,... ,Pn, then the order of a in A is [[}_,p;. In particular,
order(a) is not a multiple of p? for any prime p.
(b) Let f = £A and let u,v € A. Then, for the following three state-
ments (t), (44) and (ii%), the implications (i) = (it) = (ii1) hold.
(i) (g € w)(Fi(w) = v)
() (Vi€ I)(u(i) = 0% & v(i) = 0M)
(%) A |= order(u) = order(v)
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Proof. Easy. a

DEFINITION 3. Let VarCon & {0, v, v1,v2...} be the set of all con-
stants and variables in the language L°. Then we define some sets of
L°-formulas as follows:

Bpom = {f(z) = y | z,y € VarCon, g € w},

D_atom = {~¢ | © € Patom},

Botr = {order(z) mn | z € VarCon, n € w},

D order o {—e l © € Border}

Byan = {width, ~ n | p prime, n € w},

S pian = {9 | ¢ € Puian},

Prasic = Patom U Postom U Porder U Boonder U Puidth U S-ian,
Blaic = Van Nn Boasic

DEFINITION 4. (a) For each formula 7 € ®; ., the level of 7 is a
natural number which is defined as follows. First let

A; = {¢ € Patom U P-atom | ¢ is a conjunct of a disjunct of 7}

and let
level(T) = max{g € w | £%(z) =y € A, or £%z) % y € A, z,y € VarCon} +1

if A, is nonempty. If A, = @&, then just let level(7) = 0.

(b) For each T € Py, and for each M, n € w, we will say that 7 is of
rank(M,n) iff for some z,y € {0, vy, v1,... ,Vn-1}, k € w, p prime,
one of the following four holds:

(3) T € Patom U P-atom and level(T) < M/(n +1).

(%) (k > 0) and ('r = order(z) ~ k or 7 = order(z) % k) and
(p2 does not divide k for each prime p) and
(k =1 or each prime divisor of k is < M )

(@) (T = width, = k or 7 = width, % k) and p < M and

kE<(p+1)~
(v) T = widthys = 0 or 7 = widthy, % 0.
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(c) For each M,n € w, we define two finite subsets of L’-formula as
follows:

Dpasic (M, 1) 4 the set of all members of Dpasic of rank(M,n),
* def
ébasic(M7 n) = Vﬁn /\ﬁnébaSiC(M7 TL)

LEMMA 2. Let M be a prime number and let n < M — 1. If V is a
set of L’-formulas a(zy,... ,Z,) € Patom U P-atom that are of rank(M,n),
then for any two members A,B € X2,,, VU is satisfiable in A iff ¥ is
satisfiable in B. -

Proof. Let A,B € X3, be given, and suppose that (ai,... ,a,) € A"
satisfies A = a(ay,... ,a,) for all « € ¥. We want to find (b, ... ,b,) €
B™ such that

(4) B alb,...,b,) forall « € U.

Let k be the largest integer less than or equal to M/(n + 1): that is, if
fr)~yecVorfiz)yc ¥theng<k.

Let ap = 0* and let U = {ag,a4,...,a,}, and define an equivalence
relation ~ on the index set I & {0,1,...,n} of a;’s to be the transi-
tive closure of the binary relation {(i1,is) € I? | |a;, — a;,| < k}. Let
Iy, ... ,I,_1 be an enumeration of I/~, and let s; = |I;] for each j < r.
Then let U; = {a; | i € I;} for each j <.

Let us reenumerate ag, a1, ... ,a, as

a0,1), 2(0,2)s - -+ » A(0,80)r A(1,1)7+ - - 3 A(1,81)3- - - » B(r~1,1)5- - - » C(r~1,5,_7)

so that for each j =0,... ,7—1,

Uj = {a(j,l), ceey a(j,sj)} and
aG) 2 aG2) 2000 2 Alsg)s

where < is a binary relation on U defined by v X v & f9(u) = v for
some 0 < g < k. Without loss of generality we assume that ap = a,1):
that is, Uy = {ao}-

Observe that if we define < to be the transitive closure of <, then <
is antisymmetric: that is, (u <vand v < u) = u = v. This is because
the universe A of A € X3, is a disjoint union of finite cycles whose sizes
are either lor > M > k- (n+1). The same thing can be said about B,
the universe of B. Using this fact we now choose by, ... , b, that satisfy
(4) as follows.
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Choose a function A : {0,1,... ,n} — w X w so that a; = a,; for all

1= 0, 1, ey FiI‘St, let b(O,l) = b(0,2) =oeer = b(o,s(,) = OB g bol that iS,
let b; = by for all ¢ such that A(7) = (0,¢t) for some 1 <t < sq.

Next, choose any cycle C of B other than {8p}. Let K > 0 be the
size of C. We must have K > M > k- (n+ 1). We are going to
choose all b;’s from this cycle C. For convenience, we assume C =
{1,2,...,k-(n+1),...,K} and assume £B(n) =n+1for n < K and
fB(K) = 1. There should be no loss of generality in assuming these.

Foreach j =1,...,r—1, we choose b(;1), . .. ,b,s;) from C as follows.
For j =1, let
1 ift=1,
(5) bay = :
b(l,t—l) + (a(l,t) — a(lyt_l)) ifl<t<s.
For 7 > 1, let
bii1s) + k ift=1,
(6) by = 4,0 .
b1y + (agy — age-1) ifl<t<s;

We claim that these b;’s satisfy (4).
To prove this claim, suppose that o(zy,...,%,) € ¥ is given. Then
A |= a(a) by hypotheses. To show B |= a(b), we consider two cases.

-(CASEl). a = f%z) ~ y for some z,y € {0,2;,...,Z,} and some
g<k.

For notational convenience let o = 0, and choose 4,7 €
{0,1,...,n} so that £ = z; and y = zy. Then f%(a;) = ay
should hold as A | £9(z;) =~ zy. Thus {a;, ay} C U; for some
j < r. In other words, a; = a(jy and ay = a(;y) for some
t, t/ S Sj.

From the construction (5) and (6), it is obvious that a; ) —
aiy = q = biry — by Thus fi(b;) = by holds in B, as was

desired.
(CASE2). a = f%(z) % y for some z,y € {0,z1,...,2,} and some
g<k.
Choose ¢,# € {0,... ,n} as in the previous case: i.e., f9(a;) #

ay. Two subcases arise depending on whether a; ~ ay. In
case @; ~ ay, by — by = ey — agy # ¢, and hence
f9(b;) # by in B as was desired. In case a; % ay, we are
forced to have b; = b(;,) and by = b; ) for some j # j'. Thus
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by —b; > k > q from the construction (5) and (6), which
implies B |= £7(b;) % by. 0l

DEFINITION 5. For each M > 2 and n > 0, we define a finite (up to
isomorphism) subset X, , of X° as follows:

X rtm “iAe X2y | A | width, < (p+ 1)" for all prime p < M,
and A k= widthy, < 1}

LEMMA 3. Let M be a prime and let n > m > 0. Then given A € X°
and @ € A™, there exist A’ € X, and @’ € A™ such that

(a) Whenever T(xq,...,ZTn-1) € O} ,4.(M,n), we have
(7) AET(a) & A'E7(@).
(b) Moreover, if T € ®;_..(M,n) has the property that every conjunct

basic
of every disjunct of 7 belongs to ®,tom U P-atom, then 7(a(i)) holds
in A; for every i € I iff 7(a'(i')) holds in A}, for every V' € I,
where A = [[,.; A; with each A; € D® and A’ = [[,, A} with
each Al € D°.
(c¢) Further, if m < n, then for every a;, € A’ there exists a,, € A such
that for all 7(Z,zp) € ¥}, (M, n) the biimplication

(8) AET(a,an) & A ET(@,a,)
holds.
Proof. Let M,n, m, A and @ € A™ be given as in the hypothesis. Let

el

AY [1;c; Ai with each A; € D°.
Let a & (... ,a™ 1) and let the i-th coordinate of a? be ai() for
each j < m, i € I. Recall that by @(i) we mean (a°(%),... ,a™ 1(3)).

For each prime p, let
I(p) = {i € I | height of A; = p}.

Observe that for each k € w, A |= width, = k iff |I(p)| = k. _

Now to prove item (a) of the lemma, we define a subset I'(p) C I(p),
for each prime p < M, as follows. If I(p) < (p + 1)*, then just let
I'(p) = I(p). Otherwise choose I'(p) C I(p) so that |I'(p)| = (p+ 1)"
and

(9) (Vi € I(p)) (3¢ € I'(p)) (a(s) = a(#")).
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This is possible because for each p, the set {@(i) | i € I(p)} has cardi-
nality at most (p + 1)™ which is < (p+ 1)".

Let Iy = U{I(p) | p < M, p prime}, and let I, = J{I'(p) | p <
M, pprime}. Let Ay =[] A; and let A’ ,, = Hiepm A;. For

each j < m, let a’,, and a”,, be the restriction of &/ to Iy and I,
respectively. Then we claim that, whenever 7(z) € ®;,.;.(M,n), we have

(10) Ay ET(acm) & ALy 7@ y)-

The proof of this claim is fairly straightforward—it goes as follows. First
note that we only have to show (10) for 7 € ®pasic(M, ) N (Patom U Porder U
Puideh)-

Suppose that 7 is atomic. Then = of (10) is obvious, for @__,, is simply
a restriction map of @.p. To show <, we need (9): if the equation 7
fails at a stalk A; for some prime p < M and ¢ € I(p), then 7 must fail
at Ay where 7' € I(p) is chosen according to (9).

Next suppose that 7 € ®yqer. We can easily see (10) holds by lemma
1.(a).

Finally suppose that 7 def width, ~ k € ®uiqm. In this case, (10)
reduces to

(11) Ip)| =~k < |I'(p)l = K,

where k < (p+1)". If I(p) < (p+ 1)", then I(p) = I'(p) and hence (11)
hold immediately. If I(p) > (p + 1)*, then I'(p) = (p + 1)* and thus
both sides of (11) fail: i.e., the biimplication holds. This completes the
proof of the claim.

Now, if I.yy = I (i.e., Acyr = A), then we will be done by letting

A'=A", and @ = @_,,. So we will assume that Tsy & I — Iy # 2,

and then construct A’ and @’ that satisfy (7).

First, let ¥ be the set of formulas a(zy,... ,Zm-1) € Ppasic(M,n) N
(Patom U P-atom) such that Ay = a(@s>p) where Ay is the restriction
of A on I>p and @yp is the restriction of @ on I>p. Then pick any B
from X%,,, N X3, and pick b € B™ so that B |= a(b) for all & € .
This is possible by lemma 2. Note that B consists of a single stalk of
height M. _ .

Then, let A’ be the direct product of Ay x B and let a” = o’ ,, U¥
for each j < m. We want to show A = 7(a) & A’ |= 7(a') for 7 €
(bbasic(M 3 n) n (q)atom U (border U q>wid'ch)-

First, 7 € ®,om case is obvious, since 7,—7 € ¥ in this case.

i€ley
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Next we consider the case 7 % order(z) =~ k € Pyyer Where z €
{0, o, ... ,Zm-1} and k is some natural number such that k = 1, or each
prime divisor of k is < M and k does not have any prime square factor.
Because of this condition imposed on %, if (A, a) |= order(z;) ~ k, then

(12) a’(i) is 0 for all i € Iryy,

should hold: that is, a’; » is the constant 0-map for each j < m. If
we look at the proof of lemma 2 then we can clearly see that b is
the constant 0-map for each j < m. (Actually each & is a map on a
singleton domain. But this does not matter.) For the converse, the fact
that “(A’,&@) k= order(z) ~ k implies each a’,,, is the constant 0-map”
is again easily seen in the proof of lemma 2.

Therefore, under the current supposition that 7 € ®orger, (7) reduces
to (10), which has been proved already.

Finally we consider the case 7 & width, ~ k. Again, by (10) we
only have to consider the case when p = M. But this case is trivial
since k = 0 is required from the definition of rank(M,n) in 4.(b). This
completes the proof of item (a) of this lemma.

Item (b) is more or less obvious from the construction of (A’ @'), and
hence the proof will be omitted.

Now it remains to prove item (c): i.e., the existence of a,, € A for the
biimplication (8). But the process of obtaining a,, € A from a!, € A’ is
really a reverse of what are described above already. We will skip the
straightforward proof. (]

Above lemma says that “modulo &}, (M,n)” every member of X° is
elementarily equivalent to some member of IK% Mn» Which is only a finite
set (up to isomorphism) of finite algebras. The next lemma tries to
remove the “modulo” condition.

LEMMA 4. (Elimination of quantifiers) There exists a recursive map

from the set of all L°-formulas into ®},., written T(zy,...,Z,) —
T*(21,... ,Z,), such that
(13) KeErer.

Proof. We will describe an effective procedure that produces 7* from
7. First, we write 7 in prenex normal form, and let 79(y1,. .. , Ym, Z1,... ,ZTn)
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be the quantifier-free part of 7 in its prenex normal form: that is,

T = QmYm@m-1Ym-1-- - Q¥170(Y1, - -+ , Ym» T1y- - - , Tn),
where each Q; (0 < i < m) is either V or 3. For each 0 < i < m, let

T = Qi+ 'Qlyl’f'o(yl, oy Ymy Tty - - - ,In)-

We will obtain, for each 2 = 0,... ,m, a formula 77 € &} _,.(M,n + m)
such that X° |= 7; ¢ 77, where M is the least prime > 2™(n+m + 1) -
level(7y). Then, at i = m, we will be done by letting 7* = 7},.
To be precise, we will construct a finite sequence (7} | 0 <i<m)of
formulas in &}, ;. with the following properties for every i < m:
() X =17 o,
(b) 77 € ¥}, . (M, n+m),
(c) level(r?) < 2¢ - level(n),
(d) {free variables of 7/} C {Yis1,--« »Ym> Ty~ -+ ,Tm}-
The construction of this sequence (7} | 0 <i < m) is done by induction
oni=0,...,m.
First we define 7 as follows: for each B € X%, .. and for each b €
B™™, we let 1)p ; be the conjunction of all formulas oy, ... ,Ym, 21, ... ,Zn)
such that B |= a(b) and moreover one of the following two holds:

(2) @ € Pytom U Pogtom and level(a) < level(r),
(’LZ) a € Qorder U Q-ﬂorder U q)width U Qﬂwidth and a € Qbasic(M; n+ m)

Note that

(14) B |= ¢p;(b)

holds obviously.
Henceforth we will assume without loss of generality that JC% Mpnisa
finite set (of finite algebras) for all M and n. We claim that

(15) % ¥ \/{wg;|BE7®), B XLy pimbe B

satisfies the 4 properties (a) — (d) as desired.?

30f course it should have been easier if we just took 73 to be the disjunctive normal
form for 7y. Nevertheless we stick to this construction because certain properties of
75 obtained in this way will be used later, in the proof of theorem 2. We adopt
the convention that the disjunction of the empty set of formulas is defined to be the
contradiction 0 % 0.



Decidability and finite direct products 411

Among these four properties, (b), (¢) and (d) are more or less obvious.
So we will be done by showing (a): that is,

(16) X & 7(2) & n(2).

To prove « of (16), suppose A |= 75(a@) where A € X° and @ € A™™™.
Then 14z must be a disjunct of 7*, and hence A |= 7*(a@) as desired.

To prove the converse —, let A € X% @ € A™™, and suppose A |=
Y 3(@) for some B € X° and b € B™™ such that B |= 7(b). Assume
without loss of generality that 7y is in disjunctive normal form and let
¢ be a disjunct of 7y such that B = (b). We may further assume that
this disjunct ¢ is a conjunction of formulas in ®,om U $-atom. Then
since B |= g §(b) and B |= ¢(b), every conjunct of ¢ must also be a
conjunct of ¥gs. Therefore, from A |= ¢p3(a@), we get A | p(a) and
consequently A |= 79(@) as desired. This completes the proof for the
initial stage 7 = 0 of our induction.

Before we proceed induction, observe that we can assume without loss
of generality that the quantifiers Q; are all I’s because ®;,;_ is closed
under — modulo propositional equivalence, and the level and rank of a
formula in &3, are invariant under — and the propositional rearrange-
ments involved.

Suppose that we have obtained 77 ; with all the desired properties.
To improve readability, we rename the variable y,,_;,; as z,,; for each
1 < ¢ < m. Then we may write

Ti(l'l; “e ,173) = 3fﬂs+17'i—1(271, - ,-’l?s,l's+1),

where s = n+m —4. (Thus z,; = y;.) Let 2 = (zy,...,%,), b =
(b, ... ,bs) etc. For each B € X2, and b € B®, we define ¢z} as
the conjunction of a(Z)’s as before except that for @ € ®aom U Poatom
we now require

level(a) < 2-level(7} ;).
We claim that
(17)
Ti* g V{T/)B,—b(i') | B l= Ti—l(l_)’ bs+l): Be :K%M,n+m’ I_)G Bs? b8+1 € B}

satisfies the 4 properties (a) — (d) as desired. Among these four prop-
erties, (b), (c) and (d) are more or less obvious. So we will be done by
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showing (a): that is,
(18) K = 72(Z) © 351171 (T, Tor1)-

To prove — of (18), suppose that A = 3z,.17,-1(@, z541), where A €
X°® and @ € A°. Then choose a,,; € A so that

(19) A k= 7i4(3, a511)-
By induction hypothesis (a) for ¢ — 1, (19) reduces to
(20) A |17 (a,a541)-

Now by lemma 3.(a), we choose A’ € X%, .., and @’ € A®, a] , € A’
so that A = a(@,al,,) for all a(Z,zs41) € Bfpgie(M,n + m). Then (20)
implies
(21) A’ T(@ ag),

* 1 € ¥ ,.(M,n + m) by induction hypothesis (b) for i — 1. Again
by the equivalence of 77, and 7;_; over X%, (21) reduces to

A’ = 7ia(, a540),

which means that o'z is a disjunct of 77 by definition (17). But A’ =
Yarz(@’) as we noted earlier in (14). Consequently we get
(22) A' |7 (@)

From (22) and our choice of (A’, @) and the fact that 77 (z) € ¥} (M, n+
m), we get A = 77(a) as desired.
Proving — of (18) needs more work. Suppose that A k= 77(a) where
A € X% and @ € A°. We want to show A |= 7;(a@), or equivalently

(23) A = 35117-1(8, Ts41)-

First choose A’ € X%/, ,, and @ € A” corresponding to A and @ €

A® as in lemma 3.(a). Then, among other things, we have A’ l= T (@)

as A E 7 (a) by supposition. Then by the definition (17) of 7/, there
exist B € 9C<Mn+m and b € B®, b,,1 € B such that A’ =g, b(a’) ‘and

B '= Ti—l(ba bs+l)a

or equivalently

(24) B = 7 ,(5, besn).
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Note that B is isomorphic to A’ since the formula g 5, which holds in
both A’ and B, contains all the information on the number of stalks of
height < M. The detail of this argument is shown in lemma 5.

We want to show that there exists a ; € A’ such that

(25) Al Tz'*—l(‘_l,a als+1)-

Assuming this we can choose a,,; € A that corresponds to al,; € A’ by
lemma 3.(c). Then (25) would imply A |= 7} ,(@, as+1), which in turn
implies A = 7;-1(@, as4+1) by induction hypothesis, and consequently (23)
should follow.

We will complete the proof of this lemma by finding a/,, € A’ that
satisfies (25). First note that we have the following two satisfaction
relations:

(26) A’ = ypp(@) and B = ¢pj(d),

which imply that (A’,a@’) and (B,b) look almost the same—these two
need not be isomorphic but they are similar enough that (25) follows
from (24) for some suitable a,, € A’. The point to observe is that
while 77, (Z, T541) has one more free variable than g ;(Z), the latter has
higher level for atomic and negated atomic conjuncts.

Let @ be the level of 7;_;. Then the level of 1g; would be 2¢Q). Let
by = OB and let Up = {bo,b,...,b;}. Let af = 02 and let Uy =
{ap,ai,... ,al}. A cycle C in B will be said to be Ug-dense iff it has
the property

(Ve e C)(3b e Ug)(|lc— b < Q).

In the other case C will be said to be Ug-sparse. Similarly we define the
notion of Uy-dense and Ua-sparse for cycles in A’. So, in a Ug-cycle
C, there exists ¢ € C such that |c — b| > Q for all b € Up if and only if
C is Ug-sparse. We can say a similar thing for Uga-cycles.

For each k > 0, the number of cycles with size k in B is the same as
the number of cycles with size k£ in A’. This is because B and A’ are
isomorphic to each other. In fact, from (26):

CLAM: The number of Up-dense (resp. Up-sparse) cycles
with some fixed size k¥ in B is the same as the number of
U-dense (resp. U g-sparse) cycles with size k in A’.

The proof of this claim is given at the end of this lemma.
Now the construction of a}, is done in cases.
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(CASEl). |bsy1 — bj| > @ for all j < s.

In this case b, lies in a Ug-sparse cycle, say C. Then, by the
CLAIM, there exists a U 4-sparse cycle C' C A’ with |C'| = |C|.
Take any a;,, € C’ so that |a},, —a}| > Q for all j < 5. Then
we want to show that (25) holds for this ol ,: ie., A' |
(@, d,,):

Recall that 7 ; is a disjunction of conjunctions of formulas
in ®pagic. So (24) implies B |= (b, by41) for some disjunct ¢ of
7;,. It suffices to show that A’ = p(@',a},,). Let 0 € Ppyge
be any conjunct of .

If o is of the form width, ~ k or width, % k, then it is trivial
to see that A’ |= o because ¢ has no free variables, B = o
and B is isomorphic to A’.

Suppose that o is of the form order(z;) = k or order(z;) %
k. For j = 0,...,s, o is already in 93, and hence A’ |=
o(@,a,,) follows from (26). For j = s 4 1 just note that we
have chosen a,; so that it has the same order as b,,;.

If o is of the form £!(z;) ~ z; with ¢ < @, then without
loss of generality we may assume that j = s+1 or j' = s+1, for
otherwise o holds in (B, b, b,.,) iff it is a conjunct of Y iff it
holds in (A’, @, a},,). Moreover we can exclude the possibility
of j = s+1 = j, for otherwise (£8)?(bs41) = bs41 would imply
g = 0 or ¢ is a multiple of |C| = |C’'|, and in either case
0 = £9(zs41) = T, must hold in (A',@’,al,,).

Under this assumption ¢ must fail in (B, b,b,,;) because
we are in (CASE1). Hence this case will not happen.

Finally if o is of the form £%(z;) % z; with ¢ < Q, again
we may assume without loss of generality that j = s+ 1 or
J'=s+1but j # j. Then o must hold in (A’,@,a],,) by
our choice of a ;.

(CASE2). |bsy1 — b;| < Q for some j < s.

In this case b;11 — b; = q or b; — bsy1 = g for some 0 < g < Q.
We will only consider the first case

bs+1 - bj =q

because the second case can be handled by a similar argument.
Let C be the cycle in B such that b; € C. Then order(z;) =
|C| must be a conjunct of ¢g 5, and hence |C’| = |C| where C"’
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is the cycle in A’ such that a; € C’, provided that [C | satisfies
the condition that one of order(z;) = |C| or order(z;) % |C|
appears as a conjunct of ¢gj3. If |C| does not satisfy such a
condition, than |C’| does not either. (For the “condition”, see
definition 4.(b).(4).)

We let a), = (£4)%(a}): that is, we choose a,; € A’ so
that

(27) Tr1 — a;- =q

and want to show that (25) holds for this a,;.

As before, let 0 € ®y,.q. be any conjunct of ¢ where ¢ is a
disjunct of 77, such that B’ = (b, bsy1)-

The case when 0 € ®yian U P-wign is trivial.

Next case 0 € Dgrger U Poorger 18 trivial too because if o =
order(z;) = k or o = order(z;) % k, then

order(a;,,) = order(a}) = order(b;) = order(bs1).

Finally if 0 € ®,0m U P-atom, then various cases exist.
Among these cases, we will only consider the case when o =
£ (240 ~ zy with j' # s + 1, because it is easy and tedious
to check all the remaining cases.

In this case the formula £7+(z;) & z; must be a conjunct
of ¥ ; because

((€B)(85) = bosr and (£2)7 (bosr) = by) = (2B (b5) = by

and ¢+ ¢’ < 2Q. Thus (fA')‘”q'(ag-) = a@j.
From this and the equality (27), we see that (£4')7(d},,) =
@, must hold: ie., o holds in (A',a’,a;, ) as was desired.

Now that we have finished the construction of @, we can complete the
proof of this lemma by verifying the CLAIM.

Suppose that C is a Ug-dense cycle with size £ in B and let J =
{7 <s | b; € C}. Note that J is nonempty since C is Up-dense.
Let |J| =7 > 0. Given j € J, the set {(£8)?(b;) | 0 < ¢ < 2Q} has a
nonempty intersection with {b; | j € J}, for otherwise there would be no
b € Up such that |(£8)?(b;) — b < @, which contradicts our supposition
that C is Up-dense. Similarly the set {(£®)79(b;) | 0 < ¢ < 2Q} has a
nonempty intersection with {b; | jeJ}
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Thus we can enumerate the members of J as ji,...,J, and choose
nonnegative integers gy, ... , ¢ < 2@ so that all the r-equations
(28) 19(z;,) = 25, 12(2),) R Tho, .., £ (25,) = 75,

hold in (B,b). Hence all these equations are conjuncts of Yp}, and
consequently hold in (A’,a’).

Moreover all inequations of the form £%(z;) % z;, where j # j' € J,
0 < ¢ < 2Q and f(z;) =~ z; is not mentioned in (28), should hold in
(B, b), and also in (A, d@).

Therefore all a;’s with j € J must belong to the same U 4-dense cycle,
say C', and moreover it is clear that |C'| = Y;_, go = |C|.

If there is another Up-dense cycle C; in B, then let J; = {j < s l
b; € C1}. Ji must be nonempty and disjoint from J. Consider the
equations and inequations related to J; as before, and so on .... It
is straightforward to continue this line of argument to show that there
is a 1-1 correspondence between the set of Ug-dense cycles with some
fixed size k in B and the set of Ug-dense cycles with size k in A’. This
completes the proof of the CLAIM. a

LEMMA 5. Let A,B € X%, .. If, for all & € ®pasic(M, 1) N (Pyiarn U
®_width)
AEa & BEa
holds, then A Is isomorphic to B.
Proof. Let A = [];.;, A: where each A; € D°. Then Iy = | {L4(p) |

p < M, p prime} where I4(p) df {i € I I A, has height p} for each
prime p < M. Similarly we let B = [],.; B; and Ip = J{Iz(p) l p <
M, p prime}. First we want to show that |I4(p)| = |Ip(p)| for each
prime p < M.

Let [I4(p)| = k. We consider two cases, p < M and p = M. For the
case p < M, if k < (p+ 1)”, then the sentence « o width, =~ k should
hold in A. So it holds in B too. Thus |Iz(p)| = k = |I4(p)| as desired.
Ifk=(p+1)" then foreachm =1,...,(p+1)" — 1, A | width, & m,
and the same is true for B. Thus |I5(p)| = (p + 1)* = |La(p)|-

For the case p = M, we know, from the definition of X2, , that
I4(M) is either a singleton set or an emptyset, and the same is true
for Ig(M). So by letting & % widthy, ~ 0 and/or o % widthy % 0
appropriately, we easily see that |I4(p)| = |I5(p)|-
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Now without loss of generality we let
def

L=I;%1
A;=B;={0,1,...,p;}, where p; = height of A, for each i € I,
0% = 0B =,

£4:(0) = £8(0) = 0,

) el

fAi(5) = £Bi(j) = 7+ %fl__]<pz for each i € I.
L fj=m

Then it is clear that the map A : A — B given by
(Ma))(@) =a(i) forallac A, ie I

is an isomorphism from A onto B. ]

4. Proof of the Main Theorem

Now it is easy to see that X° is decidable: given an L’-sentence T,
first obtain 7* that is equivalent to 7 over X° as in lemma 4. Then 7 has
a model in X? iff 7* has a model in K. In the process of obtaining 7* we
get integers M and n such that 7™ € ®;,;.(M,n). Then by lemma 3.(a),
7* has a model in X° iff 7* has a model in X%, ... But X%, is only a
finite set of finite algebras in a finite language, and thus decidable. We
have shown that K° is decidable.

Before we prove the decidability of KX, defined at definition 1, we first
let X! be X° in the expanded signature {f, 0,a,b,c} = L. (It is obvious
that X! D X. In fact X! is identical with X except that the stalks of each
member of X! does not have to satisfy the condition (e) of definition 1.)
Then X! is also decidable because an L-sentence ¢(a, b, ¢) has a model
in X! iff an L%-sentence 3z3y32¢(z, y, z) has a model in K°, which was
shown to be decidable just before.

As a matter of fact we need a little more than just the decidability
of X!. We need all the definitions and lemmas in the previous section
except lemma 5, for X! instead of K°. But this is straightforward to
verify once we change some definitions as follows.

First, in definition 4.(b).(¢), which is shown below,

T € Patom U Poatom and level(r) < M/(n + 1),



418 Joohee Jeong

M/(n + 1) should be changed to M/(n + 4) due to the fact that L has
four constant symbols while L? has only one.
Second, in definition 4.(b).(4i¢), which is shown below,

T =width, ~ kor T = width, ¥ k) andp< M and k < (p+ 1),
p p

k < (p+ 1) should be changed to k < (p+ 1)"*3. The reason for this
change will become clear shortly.

Third, in 5, which defines X% Mm A | width, < (p + 1) should be
changed to A k= width, < (p + 1)™™3. Also the corresponding proof in
lemma 3, around line (9), (p + 1)" should be changed to (p + 1)"*2 and
(p+ 1)™ to (p+ 1)™*3. To understand the necessity of these changes,
observe that for members of K, each stalk A; with a designated m-tuple
is determined up to isomorphism by (a°(3), ... ,a™ (7)), which may have
a configuration among (p + 1)™ possible ones (where p is the height of
A;), while for members of X!, each stalk with a designated m-tuple is
determined up to isomorphism by (a’(3), ... ,a™ (i), a*, b, cAi) which
may have a configuration among (p + 1)™*3 possible ones.

Incidentally lemma 5 may not fully hold for X! because those basic
formulas mentioned there do not give enough information for a definitive
interpretation of the three constant symbols a, b and c.

Now we are ready to prove theorem 1, our main result, which we state
again and prove below:

THEOREM 2. (The Main Result) X = Pg,(D) is decidable while
D is not. Thus the converse of (1) does not hold.

Proof. Given an L-sentence 7, obtain an L-sentence 7* € &} ; that is
equivalent over X! D K. It is enough to describe an effective procedure
to determine whether

(%) 7* has a model in X.

Note that a model A of 7* in X! is in X if and, only if for every k € w
the following condition is satisfied.

condy, : every stalk of A satisfies the sentence o} where
o (aaEO/\baéO/\caéO/\la—d zk) o |b—c| = h(k).

Let us look at the sentence 7*. Since it has no free variable, it must
be a disjunction of formulas of the form g, where B € leS M for
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some integers M and n. Further, these integers M and n are effectively
computed as we have seen in the proof of lemma 4. Since 7* has a model
in X iff one of its (finitely many) disjuncts has a model in X, we can
assume without loss of generality that 7* has only one disjunct: that is,

T =Ym
In carrying out our proof, we will eliminate various situations for

which we can effectively determine whether (%) holds. In the end all
possible situations will be eliminated and our proof will be completed.

Let us consider the case when £%(a) = ¢ is a conjunct of 7* where K
is some nonnegative integer. In this case, in every stalk of every model
of 7* in X', we must have |a — ¢| < K. Thus we only have to check
cond; for k < K for models A of 7* in X! in order to determine whether
A € X. So whether (%) holds can be effectively checked as follows:
choose natural numbers M; and n; so that 7* as well as all o}’s (for
k < K) belong to ®{,.(M1,n1). Let us enumerate all the models of 7*
in XL . as Ay,..., A, For each i = 1,...,r, check whether cond
is satisfied in A; for £k = 1,... , K. From lemma 3.(b), it is clear that
7* has a model in X iff there exists 1 < 7 < r such that A; satisfies
condy, for all £ < K, and the latter condition can be effectively checked
because XL My, 15 only a finite set of finite algebras in a finite language.

So we will assume that a formula of the form £?(a) ~ ¢ does not occur
as a conjunct of 7*. Similarly we can assume that 7* has no conjunct of
the form f9(c) =~ a. Further, we can exclude the situation when 7* has
two conjuncts, one is of the form f?(a) =~ b or £(b) ~ a and the other is

of the form £9(c) & b or £7(b) ~ c, for otherwise ja — | < K & g+ ¢
in every stalk of every model of 7* in X!. Finally, if 7* has a conjunct
of the form £9(0) ~ a, £(0) = b, £9(0) = c, f%(a) = 0, £f/(b) = 0 or
f?(c) =~ 0, then all o)’s are vacuously satisfied in every stalk of every
model of 7* in X*, and hence every model of 7* in X! is a witness for (x).
Thus checking whether (%) holds can be replaced by checking whether 7*
has a model in XL M.q» Which can be done effectively. So we will assume
that any equation relating 0 and one of a, b or ¢ does not appear as a
conjunct in 7*.

Now let us approach from a different direction. Let A be any member
of X' and let A’ € X1, correspond to A as in lemma 3.(a). Observe
that if A,y satisfies condy for all k € w, then so is A’ because each
stalk of A,/ is actually a stalk of A js. (Incidentally the converse holds
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too. But we do not need this fact in our proof.) Thus
(29) AeX = A, eX.

If the formula widthy; ~ 0 appears as a conjunct in 7%, then for any
model A of 7* in X, A’ = A, since A’ is a model of 7. So A/,
is a model of 7 which in in X. Thus checking whether (x) holds can
be replaced by checking whether 7* has a model in X1 Mn- Hence we
will assume that widthy; ~ 0 does not appear as a conjunct in 7*, or
equivalently, widthy, % 0 appears as a conjunct in 7*.
This time, let us consider the case when a formula of the form order(a) =

K is a conjunct of 7. K = 1 case is trivially eliminated because that
would imply a = 0 in every stalk of every model of 7* in X! and hence
oi’s would be all vacuously satisfied there. So from the assumption
™ € &} (M, n), we know that each prime divisor of K is < M. Then
in every model A of 7* in K, the constant symbol a must be interpreted
as 0 in every stalk of A with height > M. Thus o;’s for these stalks are
all vacuously satisfied. So we can exclude this situation again. Similarly
we can assume that formulas of the form order(b) ~ K or order(c) =~ K
cannot occur as a conjunct in 7*.

Next consider the set € % {Cim | Carr € X, C €KLy} This set
can be effectively computed because determining whether Cy; € X can
be done by checking cond;, (for C.p) only for k < M . It is clear, by
(29), that

CO{A, |AcX}D{AL, |ALT, AcK}

Thus if € = &, then so is the set of all models of 7* in X, and hence
we may conclude that (x) does not hold. So we will assume that C is
nonempty.

Suppose that A is a model of 7* in X. Then A’ ;, should satisfy some
of the conjuncts of 7*. First, all equations should be satisfied. Second,
conjuncts of the form width, ~ k or width, % k with p < M should be
satisfied.

Let C* be the subset of C consisting of those members of € satisfying
all the conjuncts of 7* mentioned above. If C* is empty, then we can
conclude that (%) does not hold. So let us assume that C* # &.

Now we are going to show that for any C € C*, there exists a model
A of 7 in X such that A_j; = C: ie., (x) holds. This will complete the
proof.

Let C € C* be given. We consider the following three cases.
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(CASEl). 7* has no conjunct which is an equation of the form £7(a) &
b, £9(b) = a, £%(c) = b, £9(b) = ¢, £9(a) ~ ¢ or £I(c) =~ a.

We will construct a member A of X by adjoining two stalks
A; and A; of height M to C. Without loss of generality
the universe of each of these stalks is {0,1,... ,M}. In all
A;’s the constant symbol 0 and the function symbol f are
interpreted as in the proof of lemma 5. Then use the following
interpretations for the remaining symbols: a®! = 0, a%? = 1,
bA =1,bA =0, A =cA2 =1,

Now we will verify that A is a model of 7* in K. Let ¢ be
a conjunct of 7*. Note that ¢ & ®,o, from our assumptions.
If ¢ € ®_4tom, then it holds in one of the 2 new stalks, and
hence it should hold in A. If ¢ € ®Pyaer, then ¢ must be
order(0) = 1 because we have excluded all other possibilities
already, and this ¢ certainly holds in A. Finally suppose that
¢ = width, =~ k or ¢ = width, % k. For p < M, ¢ should
hold in A because it holds in C € €*. For p = M, ¢ must be
width,, % 0 and this certainly holds in A. Since every conjunct
of 7 holds in A, we conclude that A is a model of 7*.

Now to show that A is in X, we have to show that cond;
holds in A for every k < M. But o holds in every stalk of
A with height < M because C € X by assumption. For the
2 new stalks A; and Ay, all o}’s hold vacuously.

(CASE2). 7* has a conjunct which is an equation of the form £7(a) ~ b
or fI(b) = a.

First of all, note that 7* cannot have an equation of the
form £7(c) ~ b or £¢(b) = c because we have eliminated this
situation earlier.

Also note that it cannot be the case that 7* has a conjunct
f(a) ~ b and also has another conjunct £7(b) ~ a. If it were
the case, then we would be forced to have M < ¢ + ¢’ which
contradicts the assumption on the rank of 7*. By a similar
reason 7* cannot have another conjunct £7(a) &~ b. Without
loss of generality we assume that the unique equation which
appears as a conjunct in 7* is f4(a) = b.

We adjoin 2 stalks A; and A, to C to obtain A. The uni-
verses and the interpretations of 0 and f are as before. Then
use the following interpretations for the remaining symbols.
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att=1a%=0,b2=1+4¢q, b2 =0, cA =0and ch? = 1.
It is straightforward to check that this A is indeed a model of
7 in X.
(CASE3). 7* has a conjunct which is an equation of the form £?(c) = b
or f/(b) = c.
This case can be handled by an argument similar to that
used in the second case.

Therefore in all possible cases we see that there exists a model A of 7*
in X such that A ) = C, as was desired. a

5. Discussion

We have made a small progress (in the negative direction) in solving
the Burris’ problem presented in the beginning of this paper. The result
of this paper might be somehow extended to give a negative answer to
a weaker version of the Burris’ problem:

If X is a class of finite algebras of the same type closed under
homomorphic images, subalgebras and finite direct products
(i.e., pseudovariety), then is Xp; necessarily decidable when-
ever X is 7

But the original Burris’ problem is of a different breed—it may very well
be the case that the answer to the problem is really “yes” and in this
case a totally different approach should be necessary.
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