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ON THE NUMERICAL METHODS FOR
DISCONTINUITIES AND INTERFACES

Hyun-CHEOL HWANG

ABSTRACT. Discontinuous solutions or interfaces are common in na-
ture, for examples, shock waves or material interfaces. However, their
numerical computation is difficult by the feature of discontinuities.
In this paper, we summarize the numerical approaches for disconti-
nuities and interfaces appearing mostly in the system of hyperbolic
conservation laws, and explain various numerical methods for them.
We explain two numerical approaches to handle discontinuities in the
solution: shock capturing and shock tracking, and illustrate their un-
derlying algorithms and mathematical problems. The front tracking
method is explained in details and the level set method is outlined
briefly. The several applications of front tracking are illustrated, and
the research issues in this field are discussed.

1. Introduction

Discontinuities or interfaces are common phenomena in physics and
other applications. The boundary between an ice and water, when an ice
melts, is one of examples of interfaces, and the seismic waves in earthquake
is an example of propagating discontinuities. However, the appearance of
discontinuities causes difficulties in their numerical computations because
the differential operator does not hold near discontinuities. A finite dif-
ference discretization behaves well in smooth regions, but it can behave
terribly near discontinuities. The solutions are oscillatory near discontinu-
ities if higher order schemes are used, or can smear the sharp resolution of
discontinuities if lower order schemes are used. The solution of numerical
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methods even could converge to the physically irrelevant solution which
is not meaningful at all.

An enormous amount of efforts has been made in this field to han-
dle these difficulties, and special numerical methods have been developed.
The purpose of this paper is to summarize the approaches to handle these
difficulties, and review recent numerical methods for them. We explain
their underlying algorithms and mathematical problems. Especially, we
concentrate on the front tracking method which the author had partici-
pated its development for several years and has been applied extensively
to various applications. The governing system of equations is concen-
trated on the system of hyperbolic conservation laws since the formation
of discontinuities is the most significant and common feature of solutions
of hyperbolic conservation laws.

The paper consists as follows. In Sec. 2, we introduce the system of
hyperbolic conservation laws and explain two main approaches for its nu-
merical solutions. In Sec. 3, we explain basic concepts and convergence
theories for general numerical methods for the system of conservation laws.
Shock capturing methods are described in Sec. 4. The approximate Rie-
mann solver is explained and BCT method are illustrated as an example of
this approaches. In Sec. 5, as a representative of shock tracking methods,
the front tracking method is described in detail and its various applications
are illustrated. The code structure and mathematical issues of underly-
ing algorithm is also provided. In Sec. 6, a level set method is outlined
as an interface tracking method for the completeness of description. We
conclude this paper in Sec. 7.

2. Shock capturing and shock tracking

We consider the numerical solution of the nonlinear system of hyper-
bolic conservation laws which is a specific type of partial differential equa-
tions having such a form:

(2.1) U+ F(U), =0,
(2.2) Uz, 0) = Up(z).
Here U(z,t) € R™ is an m-dimensional vector of conserved quantities,

F : R™ — R™ is a smooth function called the flur function, and U,
is the initial data. = could be a multi-dimensional vector for the space.
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Equation (2.1)—(2.2) arises in the modeling of physical processes through
conservation principles, and it describes many important physical phenom-
ena. Examples include gas dynamics, combustion theory, shallow water
theory, elasto-plasticity, magneto-hydrodynamics, and petroleum reservoir
engineering.

The fundamental feature of solutions of Egs. (2.1)—(2.2) is the forma-
tion of discontinuities within finite time even for smooth initial data. This
phenomenon is caused by the nonlinearity of the flux function; it leads to
mathematical and numerical difficulties because derivatives are not defined
at discontinuities. The general methodology to overcome these difficulties
is the expansion of the solution space through the weak formulation, how-
ever, weak solutions are not unique in general. Therefore, we must have
some criterion to choose the physically relevant solution from among the
many possible weak solutions and the solution which satisfies a certain
criterion is called entropy solutions. These all features of hyperbolic con-
servation laws cause the difficulties in the design of computation methods
for it.

When we devise a numerical method for solutions having discontinu-
ities, there are two requirements on it. One is the convergence to the
correct physical solution, i.e., entropy solution, and the other is obtaining
the sharp resolution of discontinuities. A finite difference discretization
behaves well in smooth regions, but it can behave terribly near disconti-
nuities. In order to assure the convergence to the correct solution, a typical
remedy for poor behavior near discontinuities is adding a small amount
of numerical diffusion. This is the shock capturing method. However,
numerical diffusion spoils the sharp resolution of discontinuities.

An alternative for overcoming poor behavior near discontinuities is to
combine a standard finite difference method in the smooth region with
some specialized procedure for tracking the location and structure of dis-
continuities. This method uses analytic information such as jump con-
ditions, to propagate tracked discontinuities, which are perfectly sharp.
This is the shock tracking or front tracking method. Front tracking has
proved very useful for many applications (e.g., gas dynamics [7, 5, 18, 23,
26, 29], petroleum reservoir simulation [12, 20, 21], elasto-plastic defor-
mation [15]). However, the implementation of front tracking can be very
complicated, especially for three dimensional flow.

The shock capturing method, by contrast, tries to produce sharp ap-
proximations to discontinuous solutions automatically by means of high
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order approximations in smooth regions. A significant advantage is that
shock capturing requires less knowledge of the wave structures, hence its
implementation is simple. This method finds the physically correct solu-
tion by adding the sufficient amount of numerical diffusion near discon-
tinuities while keeping higher order accuracy in smooth regions. A great
deal of progress has been made in the design of shock capturing schemes,
and a variety of such schemes are available today. However, shock captur-
ing can not handle shock waves that are sensitive to numerical diffusion,
like deflagration waves in combustion, and transitional shock waves. For
more discussion of this issue, refer Ref. (30, 32].

In fact, tracking or capturing is not an either or choice. A front tracking
code can use a capturing methods in the flow regions away from the tracked
waves. Depending on the features of the problem, such a hybrid methods
can give more accurate answers.

3. Basic concepts and convergence theories

We discretize the (z,t) plane by choosing a mesh width 2 = Az and a
time step k = At, and define discrete mesh points (z;,t,) by

(3.1) r; =1Az, i=...,—-1,0,1,...
(3.2) t,=nAt, n=01,....
Intermediate points z;./ are defined such as

1
(3.3) Titij2 = (2 + §> Az.

For simplicity we take a uniform mesh. The finite difference methods
produce approximations U € R™ to the true solution u(z;, t,) at the dis-
crete mesh points. It is also convenient to define a piecewise constant mesh
function U(z,t) for all z and ¢ from the discrete values Ul as assigning
the value U in the grid cell, z.e.,

(34) U(.’L’,t) = Uzn fOI‘(IE,t) € [il?i_l/g,iL'H_]/Q) X [tmtn+1)-

In the following it is assumed that the mesh width Az and time step At
are related by

At

(3.5) =t

T,
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with 7 > 0 a given constant. Hence, the choice of At defines a unique
mesh.

Concerning numerical methods for hyperbolic conservation laws, there
is a very simple and natural requirement we can impose to guarantee that
approximate solutions converge to a weak solution. This requirement is
that the method be in conservation form.

DEFINITION 3.1. Consider a (2k + 1) - point finite difference method
for the conservation law. This method is said to be conservative if it can
be written as

k
(3.6) Ul =Up - 'E(F%+1/2 — F_1p2),
where F is a continuous function of 2k states:
(3.7) Fip = F(Ulgsrs - Ulkp)-

The function F is called the numerical fluz.

It can be shown that for consistency of a conservative method, it is suf-
ficient to require the numerical flux function F' to be Lipschitz continuous
and to satisfy

(3.8) Flu,...,u) = f(u)
where f is the true flux of the original conservation law.

Lax and Wendroff [34] proved that if a conservative and consistent
scheme converges to some function u(z,t) as the grid is refined through
some sequence, then this function will in fact be a weak solution of the con-
servation law. However, since there can be more than one weak solution,
different sequences might converge to different weak solutions dependent
on the convergent sequence. We need a numerical admissibility criterion
to insure that the limit function u is the physically correct weak solution
of the conservation law. However, the most criteria used for mathematical
theories are hard to apply to discrete solutions since a discrete approxima-
tion defined only at grid points is discontinuous everywhere in some sense.
The widely used approach to overcome this problem is to define a function
called an entropy function n(U) for which an additional conservation law
holds for smooth solutions that becomes an inequality for discontinuous
as similar as a physical entropy. This function is assumed to be convex
and to satisfy a conservation law of the form

(3.9) M(u)e +P(u): =0
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for some entropy flur ¥(u). Combining this entropy function with the
notion that the physically relevant solution is the stable limit of vanishing
viscosity weak solutions, we can easily derive the admissibility condition
in terms of the entropy function n(u) and corresponding entropy fluxes

P(u) [35).

DEFINITION 3.2. The function u(z,t) is the entropy stable solution of
a system of conservation laws if, for all convex entropy functions n and
corresponding entropy fluxes v, the inequality

(3.10) n(w)e + $(u): <0
is satisfied in the weak sense (for all non-negative test functions).

This formulation is very useful in analyzing numerical methods. The
discrete form of this is given as

(1) (U < n(UF) - SO — (Ui - 1),

where ¥ is some numerical entropy flux function that must be consistent
with 9 in the same manner that we require F' to be consistent with f.

DEFINITION 3.3. A conservative numerical method is called an entropy
stable method if, for all convex entropy functions n and corresponding
entropy flux ¢, the inequality Eq. (3.11) is satisfied.

The following theorem is the extension of the theorem of Lax and Wen-
droff and is proved in Ref. [34].

THEOREM 3.4. Suppose that a conservative method is consistent with
the conservation law and is entropy stable. Let Uj(z,t) denote the numer-
ical approximation on the l-th grid indexed by | = 1,2,..., with mesh
parameters k;, hy — 0 asl — oo. If U, converge tou as ! — oo in the sense
of bounded, L, convergence, then the limit u is an entropy stable solution
of conservation law.

The Lax and Wendroff theorem and its extension does not guarantee
the convergence of the method; only says that if a sequence of approxima-
tions converges, then the limit is a weak solution. To guarantee conver-
gence, we need some form of stability condition. Such stability has been
developed for scalar conservation laws; examples include a monotonicity
preserving or total variation diminishing (TVD) conditions. However,
for general systems of conservation laws with arbitrary initial data, no
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numerical method has been proved to be stable or convergent, except in
some special cases. Therefore we restrict attention to convergence results
in the scalar case.

For a given function u(z,t), the total variation TV (u) at time t is
defined by

TV(u) = limsup —i—/ lu(z + €, t) — u(z, t)| dz

e—0 00
1 o
(3.12) + lim sup —/ |u(z, t + €) — u(z, t)| dz.
¢—0 € —00
When u is discretized by some numerical method, the analogous definition
at time ¢, is

(3.13) TV(U(,ta) = Y [UR = U7l

i=—00
DEFINITION 3.5. The numerical method is total variation diminishing
(TVD) if
(3.14) TV(U(:, tnt1)) S TV(U(-, t0)),
for all grid functions U(:,t,).
THEOREM 3.6. Let T be a given constant and suppose that U is gen-
erated by a numerical method. Suppose that this numerical method is

entropy stable, and suppose that for each initial data ug = u(z,0), there
exist ky and R > 0 such that

(3.15) TV(U(-,t,)) <R Vn,k with k<ky and nk <T.

Then the method is convergent for k — 0 in the sense of bounded, L,
convergence and its limit is the unique entropy stable solution.

The proof of this theorem can be found in the Ref. [35]. Thus, if TVD
method is used, then the inequalities
(3.16) TV((U(-,t,)) < TV(U(-,0)) < TV (up)
guarantee that the TVD method is convergent.

DEFINITION 3.7. The numerical method is called monotonicity pre-
serving if the following statement holds: whenever vy is monotone (ei-
ther nonincreasing or nondecreasing), then U(-,¢,) is also monotone for
all t > 0.
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DEFINITION 3.8. The numerical method is called monotone if the fol-
lowing implication holds:

(3.17) Viz,t,) 2 Uz, ty) Vo = V(z,th1) 2 Ulz, thy) Ve

DEFINITION 3.9. The numerical method is called L,-contracting if the
following statement holds;

(3.18) NUC ) = Vst S UG ) = V)|
Here, || - ||; denotes the L; norm in the space variable.

If the numerical method is monotone, then it is L; contracting. A
numerical method which is L contracting, is always TVD. Furthermore, a
numerical method that is TVD is always monotonicity preserving (10, 35].

THEOREM 3.10. If the numerical method is monotone, then the method
is convergent in the sense of bounded L, convergence and its limit is the
unique entropy stable solution.

Although this monotonicity requirement always lead to convergence to
the entropy stable solution, this method is at most first-order accurate:

THEOREM 3.11. A monotone numerical method is consistent of at most
order one.

The proofs of above two theorems can be found in Ref. [28]. A three-
point stencil TVD method is also at most first-order accurate. However,
five-point stencil TVD methods are possible to be second-order accurate in
smooth regions as a second-order upgraded versions of three-point stencil
method through limiters. For example, van Leer's MUSCL scheme [51],
Harten’s ULTIMATE scheme [27]. The most common analytic tool for the
proof of convergence for them is the compensated compactness arguments
which are based on H~! compact entropy production. The good reference
for the weak convergence and compensated compactness would be a book
by Evans [14], and refer DiPerna’s paper {44] to see the application of this
theory to the system of hyperbolic conservation laws.

Although Goodman and LeVeque proved that any method that is TVD
in two space dimension is at most first order accurate [24], many multi-
dimensional methods, such as operator splitting methods, finite volume
methods, the wave propagation method, etc, have been designed with
their own advantages. The main design strategy of them is to achieve the



Numerical methods for discontinuities and interfaces 663

second-order accurate in smooth regions but reduce the spurious oscilla-
tion near discontinuities. The proofs of convergence to entropy satisfying
solutions are mostly missing yet in most multi-dimensional schemes. The
compensated compactness frame works well to prove their convergence
in one-dimensional schemes, and the concept of measure valued solutions
is using to prove the convergence of finite volume methods in the multi-
dimensional case. The results of multi-dimensional case are mostly for a
scalar case and still many problems are open for multi-dimensional sys-
tems.

4. Shock capturing methods

In this section, we will restrict the scope of our discussion to one impor-
tant class of shock capturing methods for hyperbolic conservation laws:
Godunov-type methods. In a Godunov-type method, the numerical so-
lution U(z,t,) is considered to be a piecewise constant function 4"(z,t,)
with the value U in each mesh cell (z;_y2, Ziy1/2) at time level ¢,. The
cell interface at z;,1/, separates two constant states, U; and Us;,. There-
fore the initial-value problem is a Riemann problem the solution of which
gives informations about the local wave interaction. The evolution of the
solution in a cell to the next time step is carried out by solving Riemann
problems at the two cell interfaces and averaging the solution at time ¢,,1:

Liv1/2
(4.1) Ur = % W@, tnsr)de.

Ti-1/2

In order for adjacent Riemann problems not to interfere, the inequality
1
(4.2) At | A |maz < §A$

must hold, where |A| e, = max(JA\i], - .. ,{Am]), this is a CFL condition {48,
33]. However, the exact solution of a Riemann problem is hard to obtain
and computationally expensive. Instead approximate Riemann solvers are
often used.

There are also two important assumptions underlying Godunov type
methods equipped with approximate Riemann solvers. First, the system
must be strictly hyperbolic, so that the linearized coefficient matrix pos-
sesses a complete set of eigenvectors. Second, each mode of wave propaga-
tion must be either genuinely nonlinear or linearly degenerate. Since the
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systems and waves we are considering do not satisfy these assumptions,
standard Riemann solvers cannot be directly applied. Efforts to overcome
this restriction and extend methods to general systems have been made
by Bell, Colella and Trangenstein [3]. The basis of these approaches is to
add sufficient dissipation that an entropy satisfying solution is obtained.
We find that as a result, they cannot handle the waves we are considering
which are sensitive to the numerical regularization. In next sections, we
describe approximate Riemann solvers and the method of Bell, Colella and
Trangenstein (BCT) as an example of the Godunov-type method extended
to higher order accuracy and general systems of conservation laws.

4.1. Approximate Riemann solvers

As mentioned earlier, approximate Riemann solvers are preferred, even
when exact Riemann solutions are known, because of computational ef-
ficiency. Also, in a Godunov method, since the exact solution is later
averaged over each grid cell, it seems appropriate the use of an less ex-
pensive approximate Riemann solution. An approximate Riemann solver
can be viewed simply as giving a new form of numerical flux in Eq. (3.6).

The most commonly used approximate Riemann solvers are Roe’s
method [50] and Osher’s method [43]; the latter is used in the BCT method
as we describe in next section. Therefore here we examine a Roe’s approx-
imate Riemann solver.

The idea of Roe’s method is to approximate the original nonlinear sys-
tem by a constant coefficient linear system with flux A(UL, Ur)U(z,t) at
each cell. Then Roe suggested that the matrix A should satisfy following
conditions:

(i) Uy, Ug — U with some point U between Uy and Uy, then A(Uy, Ug)
— A(D).

~

(it) A(Uw, Ugr)(Ur — Ur) = F(Ug) — F(Up).
(iii) A(Ur,Ug) is diagonalizable with real eigenvalues.

Given such a matrix A, the numerical flux function is given as
Fip = f(Us) - Z ApQpTp
Ap>0

(4.3) = f(U:)+ Z ApQtpTp,

Ap<0
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where Uiy — U; = 3 oy, and 7 is the p-th eigenvector of A(U ).

Generally, however, it is not easy to derive a suitable A matrix for a
system of conservation laws. In Ref. [50], Roe found such a matrix for the
Euler equations.

4.2. BCT method

One problem to be addressed is eigenvector deficiency. The BCT method
is an extension of Godunov type of methods to handle the case of eigenvec-
tor deficiency which often appears in several applications such as magneto-
hydrodynamics, three-phase flow through porous media, and combustion.
The BCT method has a procedure to detect points where the solution
exhibits local linear degeneracy or non-strictly hyperbolicity. At these
points, the Godunov method is modified, by adding sufficient dissipation
so that the scheme is stable. At all other points, a variation of the standard
Godunov method is used, with the Engquist-Osher type of an approximate
Riemann solver [13, 43].

The detection algorithm is based on an inequality that estimates the
possibility that two wave speeds coincide in the vicinity. Let us call Uy and
Uk the states in neighboring cells. The jump from Uy to Uy is decomposed
into m jumps corresponding to each of the wave modes:

(4.4) Up—Up =Y G,
s

where, U = 1/2(U+Ug) and 7, := r;,(U) is the k-th eigenvector of F'(T).
Then the inequality is given as

(45) I)‘l — )‘]l <01 Z ak|f€ik — """jkl,

k=1
where k;;, called the structure coefficients, are defined to be
(4.6) Kik = )\i * T

If this inequality is satisfied, then A; and A; are assumed to be involved in
an eigenvector deficiency.
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When there is no eigenvector deficiency, the numerical flux in Eq. (3.6)
is given as

(4.7)

F(UL,Ug) = F(Ur) + Z[/ - min(Ax(a),0)da] - 7 when & >0,
k=1 Y0

where & is the mean speed defined as
(F(U) — F(Ug)) - (U — Ug)
Uz — Ukg|?

If & is less than 0, then an analogous formula based on Uy instead of Uy,
is used:

(4.9)

F(UL,Ug) = F(Ug) — Z[/dk max(Ax(a),0)da] -7, when & < 0.
k=1 VO

(4.8) 5=

In contrast, when eigenvector deficiency is detected at Uy and Ug, say
i-th and j-th families, the calculation of the flux is divided into two cases,
depending on the sign of the maximum and minimum eigenvalues involved
in eigenvector deficiency. Let

min __ . L \L \R \R
(410) AU = mln(Ai 3 A] s A’L y A] ),
max __ L yL yr \R
(4.11) A= max(A, Af, AL AT
When A" and AJ* have the same sign, set
(4.12) ry = 2T
Qyj

where &;; = ||&;7; + &;7;||, and define the numerical flux by
F(UL,Ug) = F(UL)+ Z /5 min(\(e),0) da - 7
k#ij Y0
(4.13) +/Oaij min()\;(a), 0) da - 7.
where );; is a linear function such that

(4.14) Aij(0) = max(\F, AF)

i1
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and

(415) )‘ij(@ij) = mm()\f, /\52)

This choice of )\ assumes the maximally compressive wave and makes the
scheme to incorporates a judicious amount of additional dissipation in
this formalism. Otherwise, when )\;’j‘i“ and AJ*™ have opposite signs, the
deficiency is assumed to be associated with a transonic wave, the integral
correction term is replaced by a dissipative term such as

(4.16)
ap, 1
F(UL, UR) = F(UL) + Ek#,j [/ min()\k(a), 0) do - 7| — il/c_!ijfij,
0

where v = max(|Af, X[, [AF], |AF]). The higher order extension could be
accomplished through the slope limiter method as same as in the paper

by Colella [8].

5. Front tracking methods

Front tracking method is an adaptive computational method in which
a lower dimensional moving grid is fitted to and follows the dy.aamical
evolution of distinguished waves in a fluid flow. The method takes advan-
tage of known analytic solutions for idealized discontinuities. Numerous
approaches to front tracking have been taken since Richtmyer and Mor-
ton first proposed the method [49]. One of the important issues among
these approaches is to keep the conservation principle on each side of
fluids. Chern and Colella [6] and recently LeVeque and Shyue [36, 37
have proposed tracking methods coupled with conservative finite volume
method and the propagation of fronts using Rankine-Hugoniot condition
of the front. The Stony Brook group, led by Glimm, has developed a
very extensive set of tools for shock and interface tracking in one, two,
and three space dimensions and successfully applied to a wide variety of
problems [38, 45, 5, 7, 17, 16, 26]. The code structure and underlying
ideas are very effective and useful, therefore, it would be worthwhile to

briefly discuss ideas behind the Stony Brook front tracking method in this
section.
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FIGURE 1. Basic structure of front tracking code

5.1. Basic structure

Front tracking is composed of two basic sets of libraries: a physics-
independent set of libraries, which manipulates the geometry of fronts
and performs the high-level operations; and a set of physics-dependent
libraries, which handles all operations specific to a given application. Cur-
rently, the Stony Brook code handles three classes of physics: gas dynam-
ics, porous media flow, and elasto-plastic solid mechanics.

In front tracking, the most basic physics-independent data structures
are the interface and the front. The interface contains data structures
and routines for manipulating the geometry and topology of the tracked
waves. In contrast, the front contains the routine for the propagation of
tracked waves.

The interface data structure consists of recursive data structures such
as points, bonds, curves, nodes, triangles, and surfaces (see Fig. 2), and
its routines perform elementary operations, including creating, deleting,
copying, printing, and reading these objects. The linear pieces of a curve
are called bonds, and the start and end points of a curve are called nodes.
In general, several curves may start or end at a common node. Surfaces
are discretized in terms of triangles, and they are bounded by and meet
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along curves. Other routines are provided to join or split curves, check
for intersections, and compute the topological component containing a
given point. For more complete description of this data structure, see
Ref. [22, 4, 16].

The front library is a collection of subroutines that support states and
boundary conditions; it manages the data and geometries for the dynam-
ical propagation of tracked waves. The front library includes the interface
data structure to represent the geometries of fronts and has values for
state variables at each points of fronts. Fronts are points in one dimen-
sion, curves and nodes in two dimension, and surface and curves in three
dimension. All physics dependent operations are confined to a few sub-
routines that are accessed through pointers to functions, which are set in
a physics library.

The other physics independent libraries are called hyp, driver and util.
The hyp library contains subroutines for solving hyperbolic equation by
usual finite difference schemes. The util and driver have subroutines that
format the input and output, allocate storage, and perform debugging.
access physics-dependent operations through pointers to functions defined
in a physics library.

5.2. Propagation of the front

The propagation of the solution to the next time step is divided into
two main parts: the propagation of the tracked wave structures (front
propagation) and the updating of the values of the states at locations
away from the tracked interface (interior propagation).

The propagation of a front involves the motion of points on the front
and the evolution of the states on the front. Here we concentrate on the
front propagation algorithm for the two dimensional case, in which fronts
are curves. For each curve the operator is split into two sweeps over its
points, the normal and tangential sweeps.

During the normal sweep, a Riemann problem is solved at each point;
the left and right states in this Riemann problem come from the states on
the two sides of the curve. A second-order approximation to this Riemann
solution can be attained by drawing characteristic curves from the front
into the interior of the domain. This also provides coupling from the
interior to the front. The solutions to this Riemann problem gives the
velocity of the wave and a pair of states values at the advanced points
of the curve at next time step. The information corresponding to the
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FIGURE 2. These figures show the recursive data structures
of interface used in front tracking code: (a) in three dimen-
sions, (b) in two dimensions. The figure (a) is adapted from
Ref. [37].
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Tracked front

(b) (c)

FIGURE 3. Figure (a) shows the normal and tangential
sweep over the front, and (b),(c) show the interpolation of
interior states in a cell crossed by the front.

tangential component is included in the solution at the front by using
an one-dimensional finite difference sweep along each of the curves. (See
Fig. 3.)

This approach works away from nodes where the discontinuity curves
meet, because at such intersection points the geometry does not in general
allow an operator splitting into normal and tangential directions. In a
neighborhood of a node the curves are approximated by straight lines.
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FIGURE 4. Pinch-off of the tracked front in the simulation
of Rayleigh-Taylor in three dimensions.

Thus the evolution of nodes are determined as the solution of a two-
dimensional Riemann problem. Each type of node requires a specialized
propagation algorithm depending on the geometry of curves near a node.
In the case of gas dynamics, various node types have been classified [18,
1, 2] and their propagation algorithms have been implemented by using
shock polar analysis [9, 25].

The normal and tangential sweeps are carried out, and after propagat-
ing the nodes, algorithms are applied to redistribute and untangle curves.
This prevents pile-ups, thinning and self-intersections of the front. This
completes the propagation of the front.

After the propagation of fronts, the next step is to compute the solu-
tion in the interior. Each grid block has a list containing component and
bond information; this permits finding components and nearest interface
points efficiently. For grid cells crossed by the front are triangulated mak-
ing it possible to interpolate as (c) in Fig. 3. Then all interior grid points
are updated by using common shock capturing schemes, it completes the
propagation of solutions to the next time step. For more details of im-
plementation, refer Ref. [4, 26], and for the history and summary of front
tracking methods, refer Ref. [31].
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5.3. Applications of front tracking method

The front tracking method has been applied to various problems which
contain important singularities, or jump discontinuities such as shock
waves and material interfaces. Here we introduce some of applications
of front tracking, especially the results of Stony Brook’s front tracking
code which the author has worked for several years.

The first application to show is the problem of fluid mixing caused
from the fluid instability known as Rayleigh-Taylor (RT) or Richtmeyer-
Meshkov (RM) instability. These instabilities are originated from the
acceleration of the fluid interface separating fluids of different densities.
Since the fluid interface is very sensitive to the numerical diffusions which
most numerical methods adopt, the computa“ion results of other methods
do not match with experimental results well. However, front tracking
methods have shown that the computation of mixing rates agrees well
with laboratory experiments [29]. These results lies in the absence of
numerical diffusion at the interface of front tracking method since the
physical diffusion at a molecular level is not an important factor in these
instabilities. Fig. 4 and Fig. 5, which are computed by colleagues of the
author (Dr. Xiao Lin Li and Dr. Mary Jane Graham) and adopted under
their allowance, show the simulation results of RM and RT instabilities
respectively.

The next example is an etching and deposition simulation appearing
in the manufacture of semiconductor chip. These processes are modeled
as the evolution of level surface S(X,t) which satisfies a Hamilton-Jacobi
equation:

(5.1) Si+ H(S;) =0,
where H is a Hamiltonian function. H has the form
(5.2) H(P) = c(P/| PP,

where P = S; and c is a function called the etching or deposition ef-
fictency which is different by the property of the incoming beam. This
example shows that front tracking method is not restricted to the form
of hyperbolic conservation laws. Any type of equations can be applied
when they contain discontinuous curve or surface if their propagation al-
gorithms are provided. In the case of a Hamilton-Jacobi equation, the
propagation algorithm for the level surface S has been analyzed through
the concept of viscosity solutions [11], and the cusp, corners, and nodes
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FIGURE 5. The simulation of Richtmeyer-Meshkov (RM)
instability in the cylindrical coordinate. The dense black
line represents a tracked interface and it conserves the sym-
metries of the mushroom shape of growing interfaces.

are handled by solving Riemann problems and the approximation of its
characteristic equation. Refer [19] for details. The figure Fig. 6, simulated
by Dr. Dechun Tan, shows some of results of the etching and deposition
simulation.

The third application to show is the elasto-plastic material simulation.
When two materials impact, its simulation is difficult because the phenom-
ena is highly nonlinear: it could lead to material fracture and failure. It
also involves material boundaries and complicated wave patterns with dis-
continuous solution features. The fully conservative Eulerian formulation
was proposed by Plohr and Sharp (46, 47] and its numerical computation
in multi-dimension is currently under development. Here we omit in de-
tails, but present a computational result of the impact simulation using
front tracking of material interfaces. The full description of its numeri-
cal algorithm and Riemann solution is in preparation [40, 39] and will be
published soon.
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FIGURE 6. Etching and deposition simulation. 3D images
of the void formation simulation at ¢ = 0.11. From left to
right: end view, cut by the plane y = 0, and a corner,
respectively.

FIGURE 7. The same simulation at time ¢t = 0.22. The
surface has just intersected itself near the top of the trench.
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Time=0.45us

FIGURE 8. The picture shows the penetration of a tantalum
projectile impacting normally on a tantalum target. The
contour is drawn in the pressure plane, and the material
interface is tracked by the front tracking method.

6. The level set method

In 1987, S. Osher and J. A. Sethian devised a numerical method called
the level set method to capture the moving fronts appearing in solutions [42].
The moving front is represented by an auxiliary function ¢(z,¢) which is
Lipschitz continuous and called a level set function since ¢(z,t) = 0 rep-
resents the boundary of the moving front. A level set function ¢ satisfies

(6.1) b+ V=0,

where 4 is the average velocity of the moving front. When 7 is the normal
vector of the moving front, generally @ -7 is a function of the geometry of
the moving front, therefore it leads to the Hamilton-Jacobi equation such
as

(6.2) ¢+ |Vo|H(V, ) =0.
For example, H could be a function of the curvature « of the front which is
given as k =V - (l—%) . Any numerical method for the Hamilton-Jacobi

equation can be used to solve this equation, and the motion of front is
represented as a zero level set function. This method has been applied in
several applications which contain moving fronts like rising air bubbles or
falling water drops [41].
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Both front tracking and the level set method are methods to handle
the same kind of problems which contain moving fronts or interfaces.
The main difference of two methods is that front tracking can adopts
the analytical information on the motion of fronts, on the other hand,
the level set method is purely numerical. The other difference is that
front tracking handles topological changes of fronts and the interaction
of fronts artificially using the computational geometry algorithms, how-
ever, the level set method can handle the topological changes of fronts
by just solving Eq. (6.2) numerically. The easy handling of topological
changes of the front is a major advantage of the level set method, but the
level set method can not handle the interactions of several fronts. Since
front tracking could apply analytical solutions of moving fronts whenever
they are available, its computational results of the problems which are
sensitive to numerical diffusion should be accurate than those of the level
set method. In fact, unphysical pressure waves are noticed at an acceler-
ated fluid interface when the level set method is used. However, the level
set method is faster and simpler to implement than the front tracking
method. Therefore both methods have their own advantages and could be
used dependent on the properties of problems and analytical information
on the problems.

7. Conclusion

Many problems are still open both in theories and numerics on the sys-
tem of hyperbolic conservation laws. Regarding numerical methods, the
design of higher order accurate multi-dimensional scheme is a challeng-
ing project. Although Goodman and LeVeque proved that any method
that is TVD in two space dimension is at most first order accurate [24],
many multi-dimensional methods, such as operator splitting methods, fi-
nite volume method, wave propagation method, etc. have been designed
with their own advantages. However, their convergence results to entropy
satisfying solutions are mostly missing yet. The compensated compactness
frame or measure valued solutions works well to prove their convergence in
one-dimensional schemes, however, the results of multi-dimensional cases
are mostly for a scalar case and the problems of multi-dimensional systems
are still open.
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The approach for treating discontinuities or interfaces separately is pre-
ferred recently in the problems having complex moving interfaces. The
front tracking method combined with advanced shock capturing schemes
could generate the best results when analytic solutions are available. Ob-
taining analytic solutions is a good mathematical problem as itself, for
example, solving a one or two-dimensional Riemann problems. These all
of problems are waiting for the attacks of many mathematicians.
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