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TAKENS-BOGDANOV ANALYSIS FOR
AN EPIDEMIOLOGICAL MODEL

GIL-JUN HAN

ABSTRACT. In this paper, we analyze a system for an epidemiological
model which has a double zero eigenvalue at certain parameter values.

1. Introduction

In this paper we introduce a system for an epidemiological model
which is studied by Feng [3]. At certain parameter values, this system
has a pair of zero eigenvalues and one nonzero eigenvalue after linearizing
about the origin. By using the center manifold reduction ([2, 9]) and
normal form calculation ([4, 8]), we provide a system which is easier
to analyze than the original system. We analyze the system near the
singular point by using a perturbation method. We also show that the
system has additional structure which is an invariant straight line that
represents the stable manifold of the unfolded fixed point. We show that
no local unfolding of this situation can produce a Hopf bifurcation. In
addition, we compare this center manifold-normal form analysis and the
analysis done by Feng [3].

2. The epidemiological model

Feng [3] introduced an epidemiological model that takes the following
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form:
d I
ZES =A—-uS - O'SZ
I
ZldEI =—(p+y) I+ "SZ
(2.1) d
Et'Q =—(u+8Q+I
d
%R - "NR + §Q7

where S represents individuals that are susceptible to disease, I repre-
sents infected non-isolated individuals, ) represents isolated individuals
and R represents recovered and immune individuals. Also A is the rate
at which individuals are born into the population, p is the per capita
mortality rate, o is the per capita infection rate of an average susceptible
individual provided that everybody else is infected, v is the rate at which
individuals leave the infected class and ¢ is the rate at which individuals
leave the isolated class: they are all positive constants. Denote the size
of school population by N = S+ I+ Q + R and active (i.e., non-isolated
individuals) by A = S+ I + R, also assume that sick children undergo
some kind of isolation and they do not infect anybody. Further assume
that the disease is nonlethal. Notethat A= N —-Q and S=A~-1-R.
We can eliminate S from (2.1). Scale time such that o= 1 by introducing
a new, dimensionless, time 7 = gt. Then the system (2.1) becomes

I'=—(v+0)I+(1- Jit’;)f
(2:2) Q =-(v+0Q+6I
R'=—-vR+(Q,
where

Introduce the fractions

S I
(2~3) U—ZH y——z, q=
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and note that p
. _ = — _
A= dtQ (v+¢)Q 01,
and
A—uS=u(I+Q+R).
By differentiating (2.3) and using (2.1), we have
v =v(y+q+2) —uy+uy — (v+¢)g)
Yy =—(v+0)y+uy+yy— (v+{)q)
¢ =1+q)(0y— v+
2 =(q—vz+z(0y ~ (v +()g).

(2.4)

The relation A = S+71+ R implies that u+y+2 = 1, so we can eliminate
the equation for ¢ in (2.4) and obtain

YV =(1-v-0y—y’—2y+yy— (v +{a)
(2.5) g =149y — v+
2= —vz+ g+ z(0y — (v + ¢)q).

We can easily show that if we choose v, § > 0 with v + 8 < 1, the
system (2.5) has the unique nonnegative fixed point (y*, q*, 2*) = (v(v+
¢)k, v¥0k,0¢k) ([5]) in addition to the origin, where

1—v—0

S Ty O

3. Center manifold reduction and normal form calculation

Consider the case that v = 0 and § = 1. Then the system (2.5)
becomes

y = —yz —Cygq
(3.1) g =1+q)(v—<Cq)
z' =(q+ z(y — {q).
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Transform
Y ¢ 0 O U
(3.2) g|l=11 0 1 v
2 01 -1 w

Then the system (3.1) becomes

AN 0 0 0 u —¢u? —uv + (1 = Quw
33 [v] =(¢C 0 0 v |+ ¢u?+uv—uw—Cow
w 0 0 ¢ w Cu? — Cw? + wv — uw

Linearizing about the origin, we see that uv plane is associated with a
pair of zero eigenvalues, while the w axis corresponds to an eigenvalues of
—¢. Thus the center manifold is a 2-dimensional surface that is tangent
to the uv plane at the origin. By using the center manifold reduction,

= w(u,v) = —luz ﬁ
(3.4) w = wlu,v) = (1 C) +C+O(3)

is a center manifold for (3.1) and

W = —~Cu? —wo + (1 <>< LR €=y | o
(3.5) 1 c—1
v = Cu+ uwv + Cu? — uv? —(C—1+ Z)u2v— Tu3+0(4)

is the approximate system for the flow on the center manifold given
by (3.4). Now let us determine the stability of the fixed point at the
origin. Note that the linearization about the origin is no help since
(3.5) has a double zero eigenvalue at the origin. Take the near-identity
transformation ([7]):

20-¢2-1 22 -2¢C+1
+—C2_lm2+Tl2

—Co 1-¢, 5 20-22-1, 2¢2 —5¢ +2
3 “ 4+ & Im -I-—————————C2 *m -—-———————6C2

u=1m—Im

v:me+1 13




Takens-Bogdanov analysis for an epidemiological model

Then the normal form is
I'=(m+ 0(4)
3.6 _
(3.6) m = —Im + C—2C—112m+0(4).

Bogdanov [1] has shown that the system which has a linear part

01
0 0
=y

Y = Z any" +y z nbpz™ L.

n=2 n=2

has a normal form

Thus the normal form (3.6) can be written by

U!'=(m
(3.7 , ¢-1,
m' = —lm + TC—Z m + O(4).

647

Note that the system (3.1) has a line of fixed points y = g = 0 for all 2.
Hence the O(4) terms in (3.7) is of the form of mg(l), where g(!) is third
or higher order polynomial in {. Therefore the system (3.7) does not have
an isolated fixed point; instead, it has a line of fixed points m = 0 for

all 1.

4. The unfolding analysis

Recall that at v = 0 and 6 = 1, the system (2.5) has a line of fixed
points y = g = 0 for all z. Now, we want to analyze the system (2.5)
near the singular point v = 0 and 8 = 1 by using a perturbation method
([7]). For this, let ¥ = @ and 6 = § + 1 in the system (2.5). Then (2.5)

becomes

Y =—(a+By—y*—zy+y((B+ 1y —(a+()g)
(4.1) ¢ =B+1y—(a+{q+ (B+1)yg—(a+¢)q°
7' = —az+ g+ 2((B+ 1y — (a+¢)q).
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With a transformation (3.2) and by using the center manifold reduction,

1+C5, . 1, 61 02
: 5u—{—C v+ R u” 4+ O(3)

is a center manifold and hence for small values o and 3, the flow near
the origin on the center manifold (4.2) is given by

(4.2) w = w(u,v,,B) =

' =—(a+Bu+((B-a-u?+ w-*_—oﬂuz

¢
—uv—(C—1)2u3+ —¢ u?v + O(4)
(4.3) ¢ ¢ .
=(B+¢B+Qu—av+Cu?+ (1+ 8 — a)uv — —::_-C—ﬁzﬁ
~ {1+ ¢)Buv - C—E—lu?’ -(¢-1+ %)uzv —uv? 4+ O(4).

Note that u in (4.3) is equal to zero when u = 0. Therefore the sys-
tem (4.3) has an invariant straight line v = 0. Take the near-identity
transformation which preserves the invariant lire u = 0 (now g = 0):

u=qg-—pq

44 -~
(44) v=prm

Then the system (4.3) becomes

a¢-1) , BA+CH+ 2(2)pq

=((+68¢+B)g—ap- 5 P R
2
_ IB(<+ 1) q2 + 0(4)
(45) C (20— al+ B+ (f
= —(a+B8)g— (1+ a)pg + Sl s

¢

¢—1
+ —Yp q+0(4)
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Recall that if @ = § = 0, then the system (4.5) becomes

P =(q+ O(4)
. C -1 2
¢ =—pg+ 5P q+0(4)
¢
that actually is of the form of
P ={q
(4.6) -1
g =-pg+ g—;D"’q + q9(p)

2¢

where g(p) is third or higher order polynomial in p (See section 3). Hence
the term O(4) in the second equation of (4.5) is of the form of qg(a, 5, p).
Therefore the system (4.5) has an invariant straight line ¢ = 0. Now we
give the following theorem:

THEOREM 4.1. If the unfolding system for the system

' =y+ 0(2)

(47) y = —ay+0(3)

has an invariant straight line, then there cannot be a Hopf bifurcation
locally.

PROOF. An unfolding of (4.7) can be written as

' =y +oa(z+ f(z,v))

(4.8)
Y = —zy + By + yg(z,v)),

where f(z,y) and g(z,y) are strictly nonlinear in x and y. The system
(4.8) has an invariant straight line y = 0. Obviously the origin is a fixed
point which we suppose always a saddle. Note that the system (4.8) has
another fixed point (z*,y*) which goes to (0,0) as « and 3 go to zero.
The Jacobian matrix for the system (4.8) is given by

J: ( a+af:1:(xay) 1+C¥fy($,y) )
-y + Bygz(x,y) —z+ B+ Bg(z,y)+ Bygy(z,v) )
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Thus
detJ [(0,0y= @B and trJ |(g,0= a + B

Since the origin is assumed to be a saddle, af < 0. From the system
(4.8), we find that the nontrivial fixed point (z*,y*) satisfies

—z"+ 0+ By(z"y") =0

(4.9)
y* + a(z* + f(z*,y*)) = 0.

Therefore we have

detJ I(a:",y‘) = —-—a(,@ + Bg + f)(aﬁfzgy"" aﬁgy - aﬁfyg:c
(4.10) — B¢z + af, +1)
trJ |(z‘,y") = a(l + fm - ﬂ2gy - /Bzggy - ﬂfgy),

where f,g, fz, 9z, fy and g, are evaluated at (z*,y*). Note that f and
g are strictly nonlinear in z and y. Therefore the only local solution for
trJ |(z»y-)= 0is a= 0 from (4.10). However if o« = 0, then detJ |(z- y»)=
0 too. Therefore the nontrivial fixed poiat (z*,y*) of the system (4.8)
cannot undergo a Hopf bifurcation locally. a

Now let’s go back to the system (4.5). Recall that the system (4.5)
has an invariant straight line ¢ = 0. Clearly the origin is a fixed point.
Another fixed point can be found by using MAPLE to perform the mul-
tivariate Taylor series expansion with respect to a and § which is

a(a+ B)
¢

The nontrivial fixed point (p*,¢*) goes to the origin as a and 8 go to
zero. For the Jacobian J of the system (4.5), we have

(",q") = (-a—-B+0(2),- +0(3)).

detJ |(0,0)= a(a + B) and trJ |(g,0= —2a — S.

By the multivariate Taylor series expansion with respect to o and 3, we
find that
detJ |(p+,q)= —a(a + B+ O(2)).
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On the other hand, the nontrivial fixed point (p*, ¢*) satisfies

(B-al+B+0¢ ,, (=1 ,
c q +TC—p

Therefore with this information and by using the multivariate Taylor
series expansion with respect to a and 3, we find that

€=1(@+h)  ((+1+2¢*)B(a+p)
+ 2
¢ ¢
(¢*8—Ca+ B+ ¢B)(a+pB)
_ R + O(4)).
Note that locally, detJ |- )= —a(a + B). Therefore detJ [(,0) and
detJ |(p+,q+) have the same values but different sign locally and hence
the one of theses fixed points is a saddle for small & and 3. Without loss
of generality, assume that (0,0) is a saddle. Then a(a+ 3) < 0 and so
the possible cases can be reduced to two cases:

(1)a>0and a+ 5 <0.
(2)a<0and a4+ 5>0.

In both cases, detJ |(p» ¢+)> 0 and from (4.11), we find that o = 0
is the only local solution for trJ |y« q-)= 0. However, if o = 0, then
detJ |(p»,q+)= 0 from (4.10). Therefore the nontrivial fixed point (p*, q*)
of the system (4.5) cannot undergo a Hopf bifurcation locally.

At this stage, we can compare between this normal form analysis and
the analysis done by Feng [3]. Feng found that for the system (4.1),
when a+ 3 < 0 and for small o > 0, the nontrivial fixed point (endemic
equilibrium) is stable for 0 < ¢ < (1, unstable for ¢; < ¢ < {2 and stable
for ¢ > (2, where

_ af(++/1+4(8+1)?) 3
G=- 2B+ 1) + O(a?)
G2 = ~B(B+1)2 + O(a?).

—a—pf—-(1+a)p"+ = 0.

tI‘J ‘(p*,q*) == a(_l +
(4.11)

Two Hopf bifurcations occur, both of them are supercritical to stable
periodic orbits. However for the corresponding normal form (4.5), if both
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o and (3 are small such that a > 0 and a+f < 0, then the nontrivial fixed
point (p*, ¢*) stays stable for any finite { > 0 and so there cannot be Hopf
bifurcations on these values. Therefore, by using the center manifold
reduction and normal form calculation for epidemiological system (4.1),
we are lead to an apparent contradiction to Feng’s result. For fixed g
and small enough a > 0 such that O(a?) — 0 and O(a2) — 0,
the curve for ¢; and {» are shown in Figure 1. Furthermore, if 8 close
to 0, the horizontal line for {5 moves closer to the { = 0 axis and the
slope of {; closer to 0. However, since a, B€ O(e) and { € O(1) in
the center manifold-normal form analysis, it has to be above the curve
for {2 (e.g. at the point indicated in Figure 2). Thus the nontrivial
fixed point for the system (4.1) is always stable for o, € O(¢) and
¢ € O(1), where a > 0 and a+8< 0. This can be checked by calculation
with DSTOOL ([6]). Therefore there is no contradiction between this
analysis and Feng’s analysis.

stable 3
&

unstable &

stable

43
stable unstable
stable

Figure 1. Figure 2.
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