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THE DISCRETE-TIME ANALYSIS OF
THE LEAKY BUCKET SCHEME WITH
DYNAMIC LEAKY RATE CONTROL

Boncg DAE CHO! AND Doo 1L CHol

ABSTRACT. The leaky bucket scheme is a promising method that
regulates input traffics for preventive congestion control. In the ATM
network, the input traffics are bursty and transmitted at high-speed.
In order to get the low loss probability for bursty input traffics, it is
known that the leaky bucket scheme with static leaky rate requires
larger data buffer and token pool size. This causes the increase of the
mean waiting time for an input traffic to pass the policing function,
which would be inappropriate for real time traffics such as voice and
video. We present the leaky bucket scheme with dynamic leaky rate
in which the token generation period changes according to buffer oc-
cupancy. In the leaky bucket scheme with dynamic leaky rate, the cell
loss probability and the -mean waiting time are reduced in compari-
son with the leaky bucket scheme with static leaky rate. We analyze
the performance of the proposed leaky bucket scheme in discrete-time
case by assuming arrival process to be Markov-modulated Bernoulli
process (MMBP).

1. Introduction

We present a queueing analysis for traffic control in ATM networks.
ATM networks support the various kinds of traffic types with different
traffic characteristics such as voice, data and video. All information in
the ATM network is transmitted in a fixed-size packet called cell. Since
input traflics are bussty and transmitted at high-speed, the network may
easily get congested. Therefore, an appropriate preventive congestion
control into and within the network is necessary.
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The leaky bucket (LB) scheme is a promising method{1] that reg-
ulates input traffics for preventive congestion control. The basic idea
of LB scheme is that a cell, before entering the network, must obtain
a token from the token pool. An arriving cell will consume one token
and immediately depart from the LB scheme if there is at least one to-
ken available in the token pool. Tokens are generated at every constant
period, and the tokens generated when the token pool is full are lost.

The original LB scheme(2] dose not have data buffer. In order to
reduce the cell loss probability, data buffer is installed in the original LB
scheme[3]. The data buffer size must be determined by considering the
trade-off between the waiting time and the cell loss probability. In order
to get the low loss probability for bursty input traffics, it is known that
the LB scheme requires a larger data buffer and token pool size. This
causes the increase of the mean waiting time for an input traffic to pass
the policing function, which would be inappropriate for real time traffics
such as voice and video.

We present the LB scheme with dynamic leaky rate in which the to-
ken generation period changes according to buffer occupancy. In the LB
scheme with dynamic leaky rate, a token is generated at every constant
period K; when the buffer occupancy is less than or equal to a thresh-
old. As soon as the buffer occupancy exceeds the threshold, the token
generation period is resetted without token generation, and tokens are
generated by a token generation period K2(< K;) until the buffer oc-
cupancy drops to the threshold. Since token is generated with smaller
period K> than the period K; when there are many cells waiting in the
data buffer, we expect that the cell loss probability and the waiting time
are reduced in comparison with the LB scheme with static leaky rate.
Therefore, the required data buffer and token pool size in the LB scheme
with dynamic leaky rate can be reduced to satisfy the same Quality of
service (QoS) as in the LB scheme with static leaky rate. The token gen-
eration periods and the token pool size can be determined by considering
the trade-off between the shaping function and the waiting time.

Lee and En[4] analyzed the LB scheme with different dynamic leaky
rate for on-off data input in which the token generation period in the on
period is somewhat smaller than that in the off period. They obtained
the cell loss probability and the mean waiting time by using the uniform
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arrival and service (UAS) model in which the queue length and the arrival
process of input traffic and token are treated as continuous variables.

To model bursty input traffics, the Markov-modulated Poisson pro-
cess (MMPP) is used in continuous-time case. The Markov-modulated
Bernoulli process (MMBP) is the discrete-time version of MMPP([5].

This paper is concerned with the discrete-time analysis of the LB
scheme with dynamic leaky rate when the arrival process is Bernoulli
process and MMBP. We obtain the buffer occupancy distribution by
using the supplementary variable method. Furthermore, we obtain the
interdeparture time distribution by using ’the state-splitting method’[6).

In the case of continuous-time, the LB scheme is analyzed by many
authors (see [7, 8] and references therein). On the other hand, there
are few papers about the performance analysis of the LB scheme with
static leaky rate in the discrete-time case. Ahmadi et al[9] considered
a batch Bernoulli arrival process as an input process and obtained the
buffer occupancy distribution by using the matrix analytic techniques.

MMBP. We also give numerical example in Section 5. Finally, conclu-
sions are give in Section 6.

Bursty Arrivals
— —» O s

i

Finite Data Buffer (B )

/ K\
Token Generation Periods \
Ka

Finite Token Pool (M)

FIGURE 1. Model of the leaky bucket scheme
with dynamic leaky rate control
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K. Sohraby and M. Sidi[10] analyzed the LB scheme with infinite data
buffer and obtained the buffer occupancy distribution for Markovian ar-
rival process. Recently, Guo-Liang Wu et al[6] obtained the performance
measures such as the cell loss probability, the waiting time distribution
and the interdeparture time distribution by assuming the arrivals to be
processes with constant and time-varying arrival rate.

We describe the LB scheme with dynamic leaky rate in Section 2. In
Section 3 we analyze the performance of the LB scheme when the arrival
process is Bernoulli. In Section 4 we analyze the performance of the
LB scheme when the arrival process is MMBP. We also give numerical
examples in Section 5. Finally, conclusions are given in Section 6.

2. Model description

We consider the discrete-time system in which the time axis is seg-
mented into a sequence of equal intervals of unit duration, called slots.
It is always assumed that cell arrival, departure and token generation
occur only at slot boundary. Arriving cells are stored in the data buffer
of finite capacity B, and those cells queued in the data buffer are served
on the first-come first-service basis. Cells arriving when the data buffer
is full are blocked and lost. The transmission right into the network is
given by a token in the token pool. The token pool has a finite capacity
M, so that the newly generated tokens are discarded when the token
pool is full. Each token allows a single cell to be transmitted in a slot,
and a token following a transmission is removed from the token pool.
A transmission in a slot takes place only if a token in the token pool is
available at that slot.

As shown in Fig. 1, the token generation period in the proposed
LB scheme changes according to buffer occupancy as follows: The token
generation period is K7 unit time when the buffer occupancy is less than
or equal to the threshold B;. As soon as the buffer occupancy exceeds
the threshold B, the token generation period is resetted without token
generation, and tokens are generated by the token generation period
K,(< K;) until the buffer occupancy drops to the threshold B;.
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3. The LB scheme with Bernoulli arrival process

In this section we investigate the LB scheme with Bernoulli arrival
process. Let A be the probability that a cell arrives at arbitrary slot
boundary, and we introduce the following notations:

Np(n) = the number of cells in the data buffer at time n+,
Np(n) = the number of tokens in the token pool at time n+,
R(n) = the remaining token generation interval present at time n + .

Since cells wait in the data buffer only if there is no token in the token
pool, we can represent the state of the data buffer and the token pool
by one random variable X (n) as following:

X(n) = Np(n) + M — Np(n).

Then {(X(n), R(n)),n > 0} forms a Markov chain, and its transition
probability matrix is given by

B, ¢t 0 ... 0 0 0 O 0 0 0

AL Bi ¢ ... 0 0 0 O 0 0 0

0 A B ... 0 0 0 O 0 0

0 0 0 B Ci 0 0 0 0 0

0= 0 0 0 A, B Cp 0 0 0 0
- 0 0 0 ... 0 A, By C, 0 0 0
0 0 0 0 0 Ay By 0 0 0

0O 0 0 ... 0 0 0 0 ... B C 0

0 0 0 ... 0 0 0 0 ... Ay By G

0 0 0 ... 0 0 0 O ... 0 A B

The blocks Ay, By, B}, Cy of order K3, Ag, Ba, By, Cs of order K3, C; of
dimension K; x K9 and A'2 of dimension Ky x K, are as following:

0 ... 0 I-MNH 0 ... 0 AH
0 ... 0 0 (I-AN)H........ 0 0
Al = , Bi= 0 e i ,

......................................................
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0 ... 0 H
(I-AH 0 0 0
B;: 0 e e , C1=
0 .. 0 (I-AH O
0 ... 0 (I-AMNH 0
0 ... ... 0 (I-ANH 0
Ao = | , DBa= 0
0 0 0
0........ 0 AH 0 ...
H 0....... 0 AH
B) = 1 , Ca=]0 ...
0 0 H 0 0
0 0 0 0
cl = 0 0 AH’ AL = 0.....
0 0 AH 0.....

......... 0 O
AH 0 0 0
0 AH 0

0 AH
0 0

...... 0 0

0 0

0 AH 0

0 (I-A)H
0
0

The AH and (I — A)H in the above blocks will appear in section 4 when
the arrival process is MMBP. In this section, the AH and (I — A)H are

replaced by A and (1 — X) respectively.

Throughout the paper we assume that the following order occurs at
slot boundary: departure if any, arrival of cell if any, and token genera-

tion if any.

3.1. The buffer occupancy distribution
Define the limiting probabilities

pis 2 lim Pr{X(n)=i,R(n) = j},

0<i<M+B, 1<j<K;(or Ky).

By the Chapman-Kolmogorov’s forward equation we obtain the following
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equations for the limiting probabilities p; ;:

(1-1) poj = (1= Npoj+1, 1L <Ky,
(1-2) po,k; = (1= X)p1,1 +po,1,
(1-3) Pi,j = (L= Npij4+1 + Api—1,541,
O0<i<M+Bi+1, 1<j<K;
(1-4) Pi,ky = (1 = A)pita1,1 + Api,
0<i<M+B1+1,
(1-5) PM+B1+1,5 = (1 = A)PM+B;+1,5+1,
1<j< K2
(1-6) PM+By+1,K2 = (1 = A)PM+B,+2,1
+ ApM4+-By+1,0 + A D PMABy i
jz2
(1-7) Pij = (1 = X)pijs1 + Api—1,541,
M+Bi1+1l1<i<M+B, 1<j<Kj,
(1-8) Pi i, = (1= Npita,1 + Api,1,
M4+ B +1<i<M+ B,
(1-9) PM+B,j = PM+B,j+1 T APM+B—1,j+1,
1<7 <Ky,
(1-10) DPM4B,Ky = ADM4B,1.

We obtain from (1 —1) and (1 —2) that

1 .
(1-11) PO+ = [T 7 PO 1<i< Ky,

- 1
Poi= 3t aoyrT TR

(1-12)

The equations (1 —3) and (1 —~4) are rewritten into following equations:

1 A

(1-13) Pij+1 = T3 Pid = Ty PimLi+h
0<i<M+B1+1, 1<j<Kz.
1 A
(1-14) Pit1,1 = T3 PiK1 = T3 Pils

0<i< M+ B +1.

By applying (1 — 13) and (1 — 14) recursively, p; ;(i = 1,2,--- ,M +
B1,j=1,---,K;) and papryB,+1,1 can be expressed in terms of pp ;. By
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(1-5)~ (1—9) we can express all p; ;(i =M +B,+1,--- ,M+B,j =
1,--+,K32) in terms of pg 1.

The unknown number pg ; can be obtained by the normalization condi-
tion

M+B; K, M+B K>
> Yomst Y Doms=1
1=0 j=1 i=M+B;+1 j=1

Using the probabilities p; j, we obtain the following performance mea-

sures:
a. Cell loss probability:

Pp =) pmiBj;-
322
b. Token loss probability:
PT = p0,1(1 - )\)
¢. Buffer occupancy distribution:
M K,
(S Shs im0
i=0 j=1

K;
Pr{ buffer occupancy =i} = ﬁ ZPM+i,j, 1<4< By,
Jj=1

K,
l > partijy  Bi+1<i<B.
i=1

d. Mean buffer occupancy:

B; K, B Ko
My=) " ipmyij+ D D iPatije
1=0 j=1 i=B;+1 j=1

By Little’s Law, we have the mean waiting time in the data buffer
(1-Pp)X’
When B; = B, our model is reduced to the LB scheme with static
leaky rate, and our result coincides with known ones[6).

w
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3.2. The interdeparture time distribution

In order to find the interdeparture time (T), we use the state splitting
method[6). Each state is split into two substates based on whether there
is a departure.

Introduce the notation

0 if there is no departure at time n,

D(n) = {

1 if there is a departure at time n,

and define the limiting probabilities

rig = nli_)rx;o Pr{X(n) =1,R(n) = j,D(n) =1},
Tij = nli)néoPr{X(n) =1, R(n) = j,D(n) = 0},

0<:<M+B, ISngl(OrKg).

The probabilities r; ; and 7; ; can be obtained by the limiting probabil-
ities p; j:

1<i<Ki

T0,5 = 0,

i =20,
70,5 = (1 — A)po,j+1,

T0,K; = AP0,1, To, i, = (1= A)po,1 + (1 — A)p1,1,

o1<i<M-1, 1<j<K,,
Tij = APi—1,j+1, Tij = (1= A)ps,j+1,
Ti Ky = APi,1, Fii; = (1 = Npig1,
ei=M, 1<ji<K;

TM,j = APM—1,j41, a5 = (1= A)pM,j+1,

™™,K; = APy, + (1= A)pmayra,
eM+1<i< M+ By,

ri,5 =0,

rik, = Api,1 + (1= Apig1,1,
ei=M+B +1, 1<j< K,

TM+B;+1,5 =0,

TM4B+1,K; = ADM+B; 41,1

+ (1 = X)par+B,+2,1,

1<j <Ky,

MK, =0,

Tij = (1~ Npij+1 + Mpi—1,541,
F1:,1(1 =0,

TM+B+1,5 = (1 = A)PM+ By +1,5+1,
K3

FM4Bi+LK; = A PM+By,j)
=2
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eM+B +1<i<M+B, 1<j<Kba,

ri,5 =0, Tij = (1= A)pi j+1 + APi-1,j+1,
Ti Ky = Api,1 + (1 = A)pit1,1, Ti ke =0,
ei=M+B, 1<j<Ks,,
T™M+B,; =0, TM+B,j = PM+B,j+1,
TM+B,Ky = ADM+B,1, TM+B, K, = 0.

The probability Pp that a cell departs at an arbitrary time is given by

M K, M+B, M+B
Po=3- 3 rst >kt Y i
=0 j=1 i=M+1 i=M+B;+1

Suppose that a cell departs at an arbitrary time 7. The system state at
time 7+ is one of the following 4 cases:

— There are ¢(1 < 7 < M) tokens in the token pool. In this case,
the next cell departure will occur as soon as a cell arrives. So, the
interdeparture time is the time interval from instant 7 to instant
when the first cell after 7 arrives.

— There is no token in the token pool and no cell in the data buffer.
In this case, if there is at least one cell arrival during (7,7 +
R(7)), the next cell departure will occur at 7 + R(r). So, the
interdeparture time is R(7). If there is no cell arrival during
(r,7+ R(7)), the next cell departure wil! occur at instant when
the first cell after 7+ R(7) arrives. So, the interdeparture time is
R(7)+(the time interval from 7+ R(7) to instant when the first
cell after 7 + R(7) arrives).

— There are i(1 < ¢ < Bj) cells in the data buffer. In this case, if
the buffer occupancy exceeds the threshold B; during (7, 7+ K1),
the next cell departure will occur at time 7+ Y; g, + K>, where

Yix, 2inf{n > 1;(X(n), R(n))
= (M + B; +1, K3)| (X(0), R(0))
=(M+iaK1)}7 152531

Here Y; g, is the time which it takes the buffer occupancy to

hit the level B; + 1. So, the interdeparture time is Y; g, + Ko.
Otherwise, the interdeparture time is K.
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— There are i(B; + 1 < ¢ € B) cells in the data buffer. In this
case, the next cell departure will occur at time 7 + Ka. So, the
interdeparture time is Kj.

In order to derive the probability distribution of Y; g, in the third case,
we introduce the square matrices P and P’ of order (M + By + 1)K +
Ky):

The matrix P consists of the first M + B; + 1 rows of the transition
probability matrix Q of the Markov chain {(X(n), R(n)),n > 0} and
the blocks 0 in the final row. The matrix P’ is the same as the matrix
P except that the (M + By, M + By +1)-block C} of dimension K; x K»
in the matrix P is replaced by the block 0.

Event {Y; x, = [} means that the Markov chain {(X(n), R(n)),n > 0}
starting at the state (M + ¢, K;) stays in the level less than the level
B; + 1 during I — 1 transitions , and at the lth transition the Markov
chain hits the state (M + Bj + 1, K2). Therefore, we have

Pr{Yi)Kl = l}
= [P'¢VP|(M +i,Ky; M + By + 1, K)
2flg, 121, 1<i<B.
where [X](i1, k1; 12, k2) is the (k1, k2)-element of the (i1,42)-block of the
matrix X.

By above 4 cases, we can obtain the conditional probability generating
function of the interdeparture time:

(1) The state of X(7)isd, 0<i<M -1,
T . 11 AZ
E[Z IX(T) _Z’D(T) - 1] - 1— (I—A)Z
£ T ().
(2) The state of X(7) is M, and R(1) =j, 1<j<Kjy,
E(z"|X(r) = M, R(r) = j,D(7) = 1]
Az

= 1= (1= ) + 0= N 5,
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(3) The state of X(7)is M +i(1 < i < By), and R(7) = K},

ElZT|X(r) = M +i,R(r) = K1,D(r) = 1]

Ky-1 K;-1

= Z fEr, 2K 4+ (1- Z Fir)Z
k=1 k=1

2Tk, (2)-

(4) The state of X(7)is M +i(: > By + 1), and R(7) = Ko,

E[ZT|X(1) = M +4,R(r) = Ko, D(7) = 1] = X2
S T_.|_ (Z)
Finally, we obtain the probability generating function of the interdepar-
ture time

1

1 M-1 K,
T(2) = — (Z Z“,J T_(2) + ZT’M,JTQ’](Z)

=0 j=1
M+B, M+B
+ Z 7‘1’,K1Ti—M,K1<Z)+ Z Ti,K2T+(z)].

The mean and the variance of the interdeparture time is given by differ-
entiating this probability generating function as

B[] = £ T(emn,

Var(T) = <57 (2) s + BT)(1 - EIT]).

4. The LB scheme with MMBP arrival

The cell arrival process at each slot boundary is governed by an irre-
ducible, aperiodic discrete-time Markov chain {J(n),n > 0} with finite
state space {1,2,---,N}, called the modulating Markov chain. The
transition between states of the Markov chain{J(n),n > 0} takes place
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only at the slot boundary, and the transition probability matrix of the
Markov chain {J(n),n > 0} is H = (h; ;)i j=1,...,n. We assume that H is
invertible. When the modulating Markov chain {J(n),n > 0} is in state
i at time n+, the cell arrival at time n+1 is Bernoulli with probability A;.
Let A be a diagonal matrix represented by A = diag(Ai, A2, -+, AN).
Then, a Markov-modulated Bernoulli process (MMBP) is characterized
by the transition probability matrix H and the arrival probability matrix
A. Let # £ (my,ma,--- ,7N) be the stationary probability vector of the
Markov chain {J(n),n > 0}. The effective arrival probability A*, which
is defined as the inverse of the expected length of the cell interarrival
time, is given by wAe, where e = (1,1,--- ,1)T. We assume that transi-
tions of the Markov chain {J(n),n > 0} are independent from any other
events in the system.

The evolution of the system can be described by a 3-dimensional
Markov chain {(X(n), R(n),J(n)),n > 0}, where X(n) and R{(n) are
the same as ones in the previous section and J(n) is the state of the
modulating Markov chain at time n+.

4.1. The buffer occupancy distribution
Define the limiting probabilities and the probability vectors

>

lim Pr{X(n)=14,R(n)=j,J(n) =1},

n—00

A1l 2 N
bij = (pi,j7pi,j7 e >Pi,j)a

0<i<M+B, 1<j<Ki(orK;), 1<I<N.

!
Yo

By the Chapman-Kolmogorov’s forward equation we obtain the following
equations for the limiting probabilities p; ;:

(2-1) po,j = Po,j+1D, 1<j<Ki,

(2-2) Po,k; = P1,1D + po,1 H,

(2-3) Pij = Pij+1D + pi-1,541D01,
0<i<M+B+1, 1<j<Kj,

(2-4) Pi,i; = pi+11D + pi,1 D1, 0<i<M+4Bi+1,

(2-5) PM+B+1,j = PM+B+1,j+1D0, 1<j < Ko,
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(2-6) PM4+ B, +1,K2 = PM+B, +2,10

+pM+B+11D1+ Y pmaB, D1,

i>2
Pi,j = Pi,j+1D + pi-1,j4+101,
(2-7) M+Bi+1<i<M+B, 1<j<Ka,
Pi Ky = Pi+1,1D +pi1 D1,

(2-8) M+ B1+1<i<M+B,
(2-9) pM+B,; =pMaBj+1H+ppmeB-1,j+1D01, 1<j< Kz,
(2-10) PM+B,K; = PM+B1D1.

where D £ (I — A)H and D, £ AH are N x N matrices.
Since H is invertible, the matrices D and D, are invertible. From (2—1),
we have

(2-11) Poj+1 =poa(P7Y), 1<j<Ki.

By (2 — 2) and (2 — 11), we can express p;,1 in terms of pg;. The
equations (2—3) and (2—4) can be rewritten as the following equations:

(2-12) pij+1 = pi D = pi_1 j41D1 DY,
0<i<M+Bi+1, 1<j<K;.
(2-13) pit+1,1 = pi,k, D™ —pi D1D7Y,

0<i<M+B;+1.

By applying (2 — 12) and (2 — 13) recursively, p; ;(z = 1,--- ,M +
By,j =1,2,--- ,K;) and pp4B,+1,1 can be expressed in terms of pg ;.
By (2—5) ~ (2—9) we can express all p; (i = M+B;+1,--- ,M+B,j =
1,2,---,Kj) in terms of pg ;.

The unknown number py; can be obtained by the following boundary
conditions:

M4+B; Ky M+-B Ko
4 1
Y2 phs+ Y, dopy=m 1=12-,N-1
i=0 j=1 i=M+B;+1 j=1
M+B; K, M+B K
[ Yoms+ > Dopgle=1
i=0 j=1 i=M+B;+1 j=1

Using the probability vectors p; j, we obtain the following performance
measures:
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a. Cell loss probability:

Y2, pmi s iAe
MYB M+B
Doizo Z j=1Pi,j Z¢=M+Bl+1 Z; 1 PijjlAe

Pg =

b. Token loss probability:
PT = pO,l(I - A)e

c. Buffer occupancy distribution:
( M K,
> pige, =0,

i=0 j=1

Pr{ buffer occupancy = i} = ¢ ZpM—H,je, 1<:< B,

2
ZPM-H,je, B +1<i:<B.

\ j=1
d. Mean buffer occupancy:
B, K,
SO D) ILTIEED i) W
i=0 j=1 i=B;+1j=1

Using the Little’s Law, we have the mean waiting time in the data
buffer
My

W= T pon

If we set all A;(i=1,---,N) equal to ), the model is reduced to the
LB scheme with dynamic leaky rate when the arrival process is Bernoulli
process.
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4.2. The interdeparture time distribution

In this subsection we analyze the interdeparture time when the arrival
process is MMBP. Define the limiting probabilities and the probability

vectors

) A
4,3

1,5
A 1 N
Tig = (ri,j’ Tt vri,j)’
0<i:<M+B,

N |
Tij = (Tigo
1 <j < Ky(or Ky),

T = nli’rgo Pr{X(n) =1,R(n) = j,J(n) =1,D(n) =1},
T2 lim Pr{X(n) =14,R(n) = j,J(n) =1,D(n) = 0},

7Fi,j)7
1<I<N.

The probability vectors r; ; and 7; ; can be obtained by the limiting

probability vectors p; ;:

ei=0, 1<j<Kj,
ro,; =0,
T0,K; = po,1D1,
e1<i<M—-1, 1<j<Ky,
rij = Pi-1,5+1D1,
ri, Kk, = pi,iDa,
ei=M, 1<j<Ki,
M, = Pm-1,5+1D1,
™™, K, =pPMm1D1 +pmy11D,
eM+1<i<M+B;, 1<j<Kj,
rij =0,
ri K, =piiD1 +pi+11D,
ei=M+B1+1, 1<ji< Ko,
TM+B;+1,5 =0,

TM+B1+1,K; = PM+By+1,101 + prm4 B +21D,

eM+ B +1<i<M+B,
T'i,j:O,

1<j <Kz,

1Ky = PinDy +piy11D,
ei=M+DB, 1<j<Ka,

rmM+B,; =0,

TM+B,K, = PM+B,1D1,

FO)J = p07.7+1D7
7o,k, =po,1 D+ p1,1D,

Tij = Pij+1D,
Ti K, = Pi+1,1D0,

M5 =PM,i+1D,
FM,K'l =0,

Ti,j = Pij+1D + pi—1,541D1,
Fi,Kl = 0:

TM4B,+1,j = PM+B,+1,j+1D,
Ky

FM4 B +1,Ky = Z PM+B;,; D1,
i=2

Tij = Pij+1D + pi-1,5+1D1,
i, Ky =0,

TM+B,j = PM+B,j+1,
TM+B Ky =0.
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The probability Pp that a cell departs at an arbitrary time is given by

M K, M+ B, M+B

Po=D)_Yrij+ Y rmmk+ Y, Tikle

i=0 j=1 i=M+1 i=M+B1+1
As in the subsection 3.2, we define the hitting time for the level B; + 1

Y k,(k,m) £ inf{n > 1;(X(n}, R(n), J(n)) = (M + By + 1,Ka,m)
1<:< By, 1<k m<N.

Then, the probability distribution of Y; g, (k,m) is given by

Pr{lfi,Kl (k7m) = l}

= [P VP(M +4, Ky, k; M + By + 1, Ky, m)

2 flg(kym), 121, 1<i<B;, 1<km<N.

where [X](il,kl, m1; i, ko, ma) is the ((k1 —1)N +mq, (k2 — 1)N + m2)
-element of the (i1,%2)-block of the matrix X.

Here the matrix P is similar in form with the matrix P with blocks
substituted the elements A and 1 — A by AH and (I — A)H respectively,
and the matrix P is the same as the matrix P except that the block C;
of dimension K1 N x K3 N is replaced by the block 0.

Let f! i, be the probability matrix with the (k, m)-element f} . (k,m).
Suppose that a cell departs at an arbitrary time 7. By considering
the system state at time 7 as in the subsection 3.2, we can obtain the
conditional probability generating function of the interdeparture time:

(1) The state of X(7) is ¢, and J(7) =1,0<:< M -1,

E["|X(r) =1,J(r) =1, D(r) = 1]
= —th row of [{I — (I — A)Hz} ' Aez2]
2T (2).
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(2) The state of X(7) is M, R(t) =j,and J(7) =1, 1<j< K,
E[ZT|X(7) = M,R(1) = j,J (1) = |, D(7) = 1]

= [ — th row of {ZJ:[(I — A H]*"1Ae2?
k=1
+[(I = A)HzP[I - (I = A)Hz]""Aez}
2 Téj(z)
(3) Thestate of X(7)is M+i(1 <i < By), R(7) = K, and J(7) =,
E[ZT|X(7) = M +1i,R(r) = K1, J(7) =, D(1) = 1]
K1 Ki-1

=1 —th row of | Z fi'leezk'*'K’ + (e — Z fi’lee)zKl]
k=1 k=1

2 Til,Kl (2)-
(4) The state of X(7) is M +i(: > By +1), R(r) = K and J(7) =,
ET|X (1) =M +i,R(t) = K, J (1) =, D(r) = 1]
= | — th row of [ez%?]
£ T (2).
Combining the above 4-cases, we obtain the probability generating func-
tion of the interdeparture time

M-1 K,
[(Z er )T-(2) +ZTMJTOJ
1=0 j=1
M+B, M+B
+ > rnikB-mx D+ Y T2,
i=M+1 i=M+B;+1

where T.(z) = (T}(2),--- ,TN(2))T.
The mean and the variance of the interdeparture time are given by dif-
ferentiating this probability generating function as

BIT) = S 1(2)]om,

& P@laer + BITI(L - ET)).

Var(T) = e
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5. Numerical examples

In this section, we give some numerical examples to compare the per-
formances of the LB scheme with dynamic leaky rate and the LB scheme
with static leaky rate. As an input process for numerical examples, we
use a two-state MMBP

A1 0
0 X’

The effective arrival probability A* for this MMBP is given by

\* = hi2X2 + ha 1)1
hi,2 + ha1

In all figures we use the parameters

the transition probabilities hy 2 = 0.6 and hy; = 0.2,
the effective arrival probability A* = 0.096 (except for Fig. 8),
the threshold B; = 3,

the token generation periods Ky = 11, Ko = 9( or 8).
and the notations

S: the LB scheme with the token generation period 10,
D;: the LB scheme with the token generation periods K; = 11,

Ky =9,
Dy: the LB scheme with the token generation periods K; = 11,
K, =8.

For the effective arrival probability A* = 0.096, the weighted average
token generation period in the proposed LB scheme is about 10, we
compare the proposed LB scheme with the LB scheme with the token
generation period 10.

Plotted in Fig. 2 is the cell loss probability of the proposed LB scheme
as a function of the data buffer size plus the token pool size. From the
figure we see that the cell loss probability in the proposed LB scheme
is less than that of the LB scheme with token generation period 10. In
Fig. 3 and 4 we show the cell loss probability and the mean waiting
time of the proposed LB scheme as a function of the data buffer size. In
the figures we keep the token pool size at constant 10. From the Fig.
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2 and 3 we see that the cell loss probability is mainly affected by the
data buffer size. We also see from Fig. 4 that the mean waiting time
is reduced considerably in comparison with the LB scheme with token
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0.0001
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le-06

Ty

le-07

A |

Cell Loss Proba

Y

le-08

1e-09 ¢ .
10 20 30 40 50 60 70 80 90 100
Data Buffer Size plus Token Pool Size (M+B)
FIGURE 2. The cell loss probability vs. the data buffer size plus the token
pool size, A* = 0.096, hy o = 0.6, hoy = 0.2, By =3

0l p—T— 7T T T
0.01 F
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0.0001 |
1e-05 |
1¢-06 |
1e-07

Cell Loss Probability (Py)

1e-08 |
1e-09 L 1
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'8 1 3 i 1

10 15 20 25 30 35 40 45 50

Data Buffer Size (B)
FIGURE 3. The cell loss probability vs. data buffer size
A* = 0.096, h12 =06, hg1 =02, M =10
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generation period 10 as the data buffer size increases. Therefore, the
required data buffer and token pool size in the proposed LB scheme can
be reduced to satisfy the same QoS as in the LB scheme with static leaky
rate.

60 T T T T T T T

[
o

Mean Waiting Time (W)
8

0 1 | 1 i 1 1 1 L
5 10 15 20 25 30 35 40 45 50
Data Buffer Size plus Token Pool Size (M+B)
FIGURE 4. The mean waiting time in the buffer vs. the data buffer size
A* =0.096, h12 =0.6, ho1 = 0.2, B=10
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!
0.0001 3
i
-
le-05 —
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Data Buffer Size (B)
FIGURE 5. The token probability vs. data buffer size plus the token
pool size, A* = 0.096, h12 = 0.6, hg1 = 0.2, B; =3
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Fig. 5 and Fig. 6 show the token loss probability as a function of
the data buffer size plus the token pool size and the token pool size
respectively. From the figures we see that the token loss probability
in the LB scheme with dynamic leaky rate is less than that of the LB
scheme with static leaky rate.

We also investigate the squared coefficient of variation C%(= Var(T)/
E[T}?) of the interdeparture time as a measure for the smoothness of the
output process. Fig. 7 shows the squared coefficient of variation of the
interdeparture time as a function of the data buffer size when the token
pool size is 10. From the figure we see that the squared coefficient of
variations of the interdeparture time in the proposed LB scheme are
larger than that of the LB scheme with token generation period 10.
We note from the figure that the token generation periods in the LB
scheme with dynamic leaky rate must be determined by considering the
shaping function. Fig. 8 shows the squared coefficient of variation of the
interdeparture time as a function of the effective arrival probability when
the data buffer size and the token pool size are 15 and 10 respectively.
From the figure we see that the squared coefficient of variations of the
interdeparture time decrease to zero as the effective arrival probability
increases.

0.1 T T T T T T T T

0.001 |

0.0001

Token Loss Probability (Py)

18-05 1 1 i 1
5 10 15 20 25 30 35 40 45 50

Token Pool Size (M)
FIGURE 6. The token loss probability vs. the token pool size
A* =0.096, hy 2 =06, hy1 =0.2, B=15
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F1GURE 7. The squared coefficient of variation of the interdeparture time
vs. the data buffer size, A* = 0.096, hy 2 = 0.6, hoy = 0.2, B; =3, M =10
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FIGURE 8. The squared coefficient of variation of the interdeparture time
vs. the effective arrival probability, h1 o = 0.6, hg1 = 0.2, B=15, M =10
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6. Conclusion

In this paper, we analyze the performance of the LB scheme with
dynamic leaky rate control. We use an MMBP to model the bursty input
traffics and obtain the cell loss probability, the token loss probability,
the mean waiting time and the interdeparture time distribution. We also
compare the performance measures of the LB scheme with dynamic leaky
rate and the LB scheme with static leaky rate through the numerical
examples. From these examples, we note that the cell loss probability,
the token loss probability and the mean waiting time in the LB scheme
with dynamic leaky rate are reduced in comparison with the LB scheme
with static leaky rate. Therefore, the required data buffer and token
pool size in the LB scheme with dynamic leaky rate can be reduced to
satisfy the same QoS as in the LB scheme with static leaky rate. We
also note that the output process of the LB scheme with dynamic leaky
rate must be adjusted with proper token generation periods, taking into
account the shaping function.
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