UNIQUENESS FOR THE NONHARMONIC FOURIER SERIES OF DISTRIBUTIONS

Mun-Ja Cho and Soon-Yeong Chung

ABSTRACT. We generalize the uniqueness theorem of K. Yoneda[9] for nonharmonic series under a much weaker condition as follows:

Let $\{\lambda_k\}_{k=0}^{\infty}$ be a discrete sequence in \mathbb{R}^n . If $\sum_{k=0}^{\infty} a_k e^{i\langle \lambda_k, x \rangle} = 0$ for all $x \in \mathbb{R}^n$ and there exists a number N > 0 such that

$$\sum_{k=0}^{\infty} \frac{|a_k|}{1 + |\lambda_k|^N} < \infty$$

then $a_k = 0$ for all $k \in \mathbb{N}_0$.

1. Introduction

In this paper we shall discuss the uniqueness of the representation by the nonharmonic series

$$\sum_{k=0}^{\infty} a_k e^{i\lambda_k x}$$

for a system of complex exponentials $\{e^{i\lambda_k x}\}_{k=0}^{\infty}$. This is closely related to the completeness of the system $\{e^{i\lambda_k x}\}$ in the corresponding space. That is to say, every theorem on the uniqueness generates a theorem on the completeness, and vice versa.

In $L^2[-\pi, \pi]$, the situation is particularly simple. It is well known that if $|\lambda_k - k| \le 1/4$ then every function f in $L^2[-\pi, \pi]$ has a unique

Received January 24, 1998. Revised May 5, 1998.

¹⁹⁹¹ Mathematics Subject Classification: Primary 46F23; Secondary 46F15.

Key words and phrases: nonharmonic series, tempered distribution.

Partially supported by GARC-KOSEF and Ministry of Education.

nonharmonic series expansion

$$f(x) = \sum_{k=0}^{\infty} a_k e^{i\lambda_k x}$$

with $\sum |a_k|^2 < \infty$, since the trigonometric system $\{e^{ikx}\}$ is *stable* in $L^2[-\pi,\pi]$ under sufficiently small perturbations of the integers (see [10]). But, in general, the system $\{e^{i\lambda_k x}\}$ is not complete even in $L^2[-\pi,\pi]$, even if the sequence $\{\lambda_k\}$ is discretely distributed on \mathbb{R} .

Recently in the paper [9] of K. Yoneda, he proved a uniqueness of the representation by nonharmonic series

$$\frac{1}{2}a_0 + \sum_{k=1}^{\infty} (a_k \cos \lambda_k x + b_k \sin \lambda_k x)$$

where $\lambda_k > 0$, $\lambda_k \to \infty$ as $k \to \infty$ and

$$\frac{1}{2}|a_0|+\sum_{k=1}^{\infty}\frac{|a_k|+|b_k|}{\lambda_k^2}<\infty.$$

The purpose of this paper is to generalize the uniqueness theorem for the nonharmonic series under much weaker condition than Yoneda's. Moreover, we shall give it in the *n*-dimensional version. Actually, one of the main theorems of this paper is as follows:

THEOREM 3.4. Let $\{\lambda_k\}_{k=0}^{\infty}$ be a discrete sequence in \mathbb{R}^n . If

 $\sum_{k=0}^{\infty}a_ke^{i\langle\lambda_k,x\rangle}=0\ \ \text{for all}\ x\in\mathbb{R}^n\ \ \text{and there exists a number}\ N>0\ \text{such that}$

$$\sum_{k=0}^{\infty} \frac{|a_k|}{1 + |\lambda_k|^N} < \infty$$

then $a_k = 0$ for all $k \in \mathbb{N}_0$.

We shall prove this theorem by using the Schwartz distribution theory, which is quite a different method from that of Yoneda's.

2. Preliminaries

We first introduce the Schwartz distribution. By $\mathcal{S}(\mathbb{R}^n)$ we denote the set of infinitely differentiable functions φ in \mathbb{R}^n satisfying the condition that for any α and $\beta \in \mathbb{N}_0^n$

$$\|\varphi\|_{\alpha,\beta} = \sup_{x \in \mathbb{R}^n} |x^{\alpha} \partial^{\beta} \varphi(x)|$$

is finite. This condition is equivalent to

$$\sup_{|\beta| \le m} \sup_{x \in \mathbb{R}^n} (1 + |x|^2)^m |\partial^{\beta} \varphi(x)| < \infty$$

for all $m \in \mathbb{N}_0$. Here we use the conventional multi-index notations such as; $\partial^{\alpha} = \partial_1^{\alpha_1} \partial_2^{\alpha_2} \cdots \partial_n^{\alpha_n}$, $\partial_j = \frac{\partial}{\partial x_j}$, $|\alpha| = \alpha_1 + \alpha_2 + \cdots + \alpha_n$ etc. for any multi-index $\alpha = (\alpha_1, \alpha_2, \cdots, \alpha_n) \in \mathbb{N}_0^n$ where \mathbb{N}_0 is the set of all nonnegative integers.

By $\mathcal{S}'(\mathbb{R}^n)$ we denote the set of all continuous linear functionals on $\mathcal{S}(\mathbb{R}^n)$ under the topology given by the semi-norms $\|\cdot\|_{\alpha,\beta}$ for each α and $\beta \in \mathbb{N}_0^n$. We usually call the element of $\mathcal{S}(\mathbb{R}^n)$ a rapidly decreasing function and the element of $\mathcal{S}'(\mathbb{R}^n)$ a tempered distribution (see [1] for more details).

For a function φ in $\mathcal{S}(\mathbb{R}^n)$, the Fourier transform is defined by

$$\widehat{\varphi}(\xi) = \int_{\mathbb{R}^n} \varphi(x) e^{-i\langle x, \xi \rangle} dx, \qquad \xi \in \mathbb{R}^n.$$

For a tempered distribution u in $\mathcal{S}'(\mathbb{R}^n)$ its Fourier transform \widehat{u} is defined by

$$\langle \widehat{u}, \varphi \rangle = \langle u, \widehat{\varphi} \rangle, \qquad \varphi \in \mathcal{S}(\mathbb{R}^n).$$

Then it is well known that the Fourier transform on $\mathcal{S}(\mathbb{R}^n)$ and $\mathcal{S}'(\mathbb{R}^n)$ is an isomorphism onto itself, respectively.

3. Main results

Here we shall give a more generalized uniqueness theorem for nonharmonic series. Recently K. Yonena proved the following theorem:

THEOREM ([9]). Let $\lambda_k > 0$, $\lambda_k \to \infty$ as $k \to \infty$ and

(3.1)
$$\frac{1}{2}|a_0| + \sum_{k=1}^{\infty} \frac{|a_k| + |b_k|}{\lambda_k^2} < \infty.$$

If
$$\frac{1}{2}a_0 + \sum_{k=1}^{\infty} (a_k \cos \lambda_k x + b_k \sin \lambda_k x) = 0$$
 for all $x \in \mathbb{R}$, then $a_0 = a_1 = b_1 = \cdots = a_k = b_k = \cdots = 0$.

In this section we generalize this theorem by considering much weaker conditions than (3.1). We say that a sequence $\{\lambda_k\}_{k=0}^{\infty}$ in \mathbb{R}^n is discrete if any subsequence of $\{\lambda_k\}$ does not converge.

THEOREM 3.1. Let $\{\lambda_k\}_{k=0}^{\infty}$ be a discrete sequence of real numbers. If $\sum_{k=0}^{\infty} a_k e^{i\lambda_k x} = 0$ for all $x \in \mathbb{R}$ and there exists a number N > 0 such that

$$(3.2) \sum_{k=0}^{\infty} \frac{|a_k|}{1+|\lambda_k|^N} < \infty$$

then $a_k = 0$ for all $k \in \mathbb{N}_0$.

PROOF. First, let $u_N(x) = \sum_{k=0}^N a_k e^{i\lambda_k x}$ and define $\langle u, \varphi \rangle = \lim_{N \to \infty} \langle u_N(x), \varphi \rangle$, for all $\varphi \in \mathcal{S}(\mathbb{R})$. Then this means that

(3.3)
$$\langle u, \varphi \rangle = \lim_{N \to \infty} \left\langle \sum_{k=0}^{N} a_k e^{i\lambda_k x}, \varphi(x) \right\rangle$$

$$= \lim_{N \to \infty} \sum_{k=0}^{N} a_k \left\langle e^{i\lambda_k x}, \varphi(x) \right\rangle$$

$$= \sum_{k=0}^{\infty} a_k \left\langle e^{i\lambda_k x}, \varphi(x) \right\rangle, \qquad \varphi \in \mathcal{S}(\mathbb{R}).$$

Note that $\xi^m \widehat{\varphi}(\xi) = \left[(-i \frac{d}{dx})^m \varphi \right] \widehat{\zeta}(\xi)$ for any $\varphi \in \mathcal{S}(\mathbb{R})$ and $m \in \mathbb{N}_0$. Then it follows that by integration by parts

$$(3.4) |\xi|^m |\widehat{\varphi}(\xi)| = \left| \left[\left(-i \frac{d}{dx} \right)^m \varphi \right] \widehat{\gamma}(\xi) \right|$$

$$= \left| \int e^{-ix\xi} \left(\frac{d}{dx} \right)^m \varphi(x) dx \right|$$

$$\leq C \sup_{x \in \mathbb{R}} (1 + x^2) \left| \left(\frac{d}{dx} \right)^m \varphi(x) \right|$$

where
$$C = \int_{\mathbb{R}} \frac{dx}{1+x^2} < \infty$$
.

First we shall show that u defines a tempered distribution.

If we put $M = \sum_{k=0}^{\infty} \frac{|a_k|}{1 + |\lambda_k|^N}$, then we obtain from (3.3) and (3.4) that for any $\varphi \in \mathcal{S}(\mathbb{R})$

$$\begin{split} |\langle u, \varphi \rangle| &\leq \sum_{k=0}^{\infty} |a_k| \left| \left\langle e^{i\lambda_k x}, \varphi(x) \right\rangle \right| \\ &\leq \sum_{k=0}^{\infty} |a_k| \left| \widehat{\varphi}(-\lambda_k) \right| \\ &= \sum_{k=0}^{\infty} \frac{|a_k|}{1 + |\lambda_k|^N} (1 + |\lambda_k|^N) \left| \widehat{\varphi}(-\lambda_k) \right| \\ &\leq MC \left[\sup_{x \in \mathbb{R}} (1 + x^2) \left| \varphi(x) \right| + \sup_{x \in \mathbb{R}} (1 + x^2) \left| \left(\frac{d}{dx} \right)^N \varphi(x) \right| \right] < \infty. \end{split}$$

Thus, u defines a distribution in $\mathcal{S}'(\mathbb{R})$.

Suppose that $V_k \subset \mathbb{R}$ is a neighborhood of λ_k which does not contain λ_j for $j \neq k$. Let $\varphi_k \in C_0^{\infty}(\mathbb{R})$ such that $\operatorname{supp} \varphi_k \subset V_k$ and $\varphi_k \equiv 1$ near λ_k .

Thus the hypothesis $\sum_{k=0}^{\infty} a_k e^{i\lambda_k x} = 0$ for all $x \in \mathbb{R}$ implies that u = 0

as a tempered distribution. Thus using $\langle e^{i\lambda_k x}, \widehat{\varphi}_j(x) \rangle = 2\pi \varphi_j(\lambda_k)$ by the inversion formula we have

$$0 = \langle u, \widehat{\varphi}_j \rangle = \sum_{k=0}^{\infty} a_k \left\langle e^{i\lambda_k x}, \widehat{\varphi}_j(x) \right\rangle$$
$$= 2\pi \sum_{k=0}^{\infty} a_k \varphi_j(\lambda_k)$$
$$= 2\pi a_j$$

for all $j \in \mathbb{N}_0$. So $a_j = 0$ for all $j \in \mathbb{N}_0$. Thus, this theorem is proved. \square

REMARK. In the above theorem the condition (3.2) is much weaker than (3.1) in Yoneda's theorem. In fact, (3.1) is a particular case (3.2) with N=2. By this consideration we can say that Yoneda proved the uniqueness of the nonharmonic series of distributions of order at most 2.

It is true that if a function f is almost everywhere zero, the tempered distribution T_f defined by f is zero in a distribution sense. So we get the following one:

COROLLARY 3.2. Let $\{\lambda_k\}_{k=0}^{\infty}$ be a discrete sequence of real numbers. If $\sum_{k=0}^{\infty} a_k e^{i\lambda_k x} = 0$ a.e. $x \in \mathbb{R}$ and there exists a number N > 0 satisfying (3.2) then $a_k = 0$ for all $k \in \mathbb{N}_0$.

In the proof of Theorem 3.1, if we consider u=0 as a tempered distribution, then this result can be of the following form:

COROLLARY 3.3. Let $\{\lambda_k\}_{k=0}^{\infty}$ be a discrete sequence of real numbers. If $\sum_{k=0}^{\infty} a_k e^{i\lambda_k x} = 0$ in $\mathcal{S}'(\mathbb{R})$ and there exists a number N > 0 satisfying (3.2) then $a_k = 0$ for all $k \in \mathbb{N}_0$.

We have proved a uniqueness of nonharmonic Fourier series defined on \mathbb{R} as a distribution of finite order. Now we shall give a uniqueness theorem for the nonharmonic Fourier series defined on \mathbb{R}^n .

THEOREM 3.4. Let $\{\lambda_k\}_{k=0}^{\infty}$ be a discrete sequence in \mathbb{R}^n . If $\sum_{k=0}^{\infty} a_k e^{i\langle \lambda_k, x\rangle} = 0$ for all $x \in \mathbb{R}^n$ and there exists a number N>0 such that

$$(3.5) \sum_{k=0}^{\infty} \frac{|a_k|}{1+|\lambda_k|^N} < \infty$$

then $a_k = 0$ for all $k \in \mathbb{N}_0$.

PROOF. Let $u_N(x) = \sum_{k=0}^N a_k e^{i\langle \lambda_k, x \rangle}$ and define $\langle u, \varphi \rangle = \lim_{N \to \infty} \langle u_N(x), \varphi \rangle$, for all $\varphi \in \mathcal{S}(\mathbb{R}^n)$.

In the same way as the proof of theorem 3.1, we can express

(3.6)
$$\langle u, \varphi \rangle = \sum_{k=0}^{\infty} a_k \left\langle e^{i\langle \lambda_k, x \rangle}, \varphi(x) \right\rangle$$

for all $\varphi \in \mathcal{S}(\mathbb{R}^n)$.

Let $\xi = (\xi_1, \dots, \xi_n) \in \mathbb{R}^n$ and $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{N}_0^n$ with $|\alpha| = N$. Since $\xi^{\alpha} \widehat{\varphi}(\xi) = ((-i)^{|\alpha|} \partial^{\alpha} \varphi) (\xi)$, we obtain that

$$(3.7) |\xi|^{N} ||\widehat{\varphi}(\xi)| \leq |(|\xi_{1}| + \dots + |\xi_{n}|)^{N} \widehat{\varphi}(\xi)|$$

$$= \sum_{\alpha_{1} + \dots + \alpha_{n} = N} \frac{N!}{\alpha_{1}! \cdots \alpha_{n}!} |\xi_{1}|^{\alpha_{1}} \cdots |\xi_{n}|^{\alpha_{n}} |\widehat{\varphi}(\xi)|$$

$$= \sum_{|\alpha| = N} \frac{N!}{\alpha_{1}! \cdots \alpha_{n}!} |((-i)^{|\alpha|} \partial^{\alpha} \varphi) \widehat{}(\xi)|$$

$$\leq \sum_{|\alpha| = N} \frac{N!}{\alpha_{1}! \cdots \alpha_{n}!} C \sup_{x \in \mathbb{R}^{n}} (1 + |x|^{2})^{n+1} |\partial^{\alpha} \varphi(x)|$$

$$\leq C' \sup_{|\alpha| = N \atop x \in \mathbb{R}^{n}} (1 + |x|^{2})^{n+1} |\partial^{\alpha} \varphi(x)|$$

where
$$C = \int_{\mathbb{R}^n} \frac{dx}{(1+|x|^2)^{n+1}} < \infty$$
.

First we shall show that u defines a tempered distribution.

If we put $M = \sum_{k=0}^{\infty} \frac{|a_k|}{1 + |\lambda_k|^N}$, then we obtain from (3.6) and (3.7) for any $\varphi \in \mathcal{S}(\mathbb{R}^n)$

$$\begin{split} |\langle u, \varphi \rangle| &\leq \sum_{k=0}^{\infty} |a_k| \left| \left\langle e^{i\langle \lambda_k, x \rangle}, \varphi(x) \right\rangle \right| \\ &\leq \sum_{k=0}^{\infty} |a_k| \left| \widehat{\varphi}(-\lambda_k) \right| \\ &= \sum_{k=0}^{\infty} \frac{|a_k|}{1 + |\lambda_k|^N} (1 + |\lambda_k|^N) \left| \widehat{\varphi}(-\lambda_k) \right| \\ &\leq MC \left[\sup_{x \in \mathbb{R}^n} (1 + |x|^2)^{n+1} |\varphi(x)| + \sup_{\substack{|\alpha| = N \\ x \in \mathbb{R}^n}} (1 + |x|^2)^{n+1} |\partial^{\alpha} \varphi(x)| \right] \\ &< \infty. \end{split}$$

Thus, u defines a distribution in $\mathcal{S}'(\mathbb{R}^n)$.

Suppose that $V_k \subset \mathbb{R}^n$ is a neighborhood of λ_k which does not contain λ_j for $j \neq k$. Let $\varphi_k \in C_0^\infty(\mathbb{R}^n)$ such that supp $\varphi_k \subset V_k$ and $\varphi_k \equiv 1$ near λ_k . Thus the hypothesis $\sum_{k=0}^\infty a_k e^{i\langle \lambda_k, x \rangle} = 0$ for all $x \in \mathbb{R}^n$ implies that u = 0 as a tempered distribution. Thus using $\langle e^{i\langle \lambda_k, x \rangle}, \widehat{\varphi}_j(x) \rangle = (2\pi)^n \varphi_j(\lambda_k)$ by the inversion formula we have

$$0 = \langle u, \widehat{\varphi}_j \rangle = \sum_{k=0}^{\infty} a_k \left\langle e^{i\langle \lambda_k, x \rangle}, \widehat{\varphi}_j(x) \right\rangle$$
$$= (2\pi)^n \sum_{k=0}^{\infty} a_k \varphi_j(\lambda_k)$$
$$= (2\pi)^n a_j$$

for all $j \in \mathbb{N}_0$. So $a_j = 0$ for all $j \in \mathbb{N}_0$. Thus we complete the proof. \square

Let $\{\lambda_k\}_{k=0}^{\infty}$ be a sequence satisfying the condition of Theorem 3.4. It is for the same reason as corollary 3.2 and 3.3 that we take the followings:

If $\sum_{k=0}^{\infty} a_k e^{i(\lambda_k, x)} = 0$ a.e. $x \in \mathbb{R}^n$ and there exists a number N > 0 such that

$$\sum_{k=0}^{\infty} \frac{|a_k|}{1 + |\lambda_k|^N} < \infty$$

then $a_k = 0$ for all $k \in \mathbb{N}_0$. Furthermore, it is true when $\langle \sum a_k e^{i\langle \lambda_k, x \rangle}, \varphi \rangle$ = 0 for all $\varphi \in \mathcal{S}(\mathbb{R}^n)$.

References

- M. A. Al-Gwaiz, The Theory of Distributions, Marcel Dekker, INC., New York, 1992.
- [2] T. Carleman, Über die Approximation Analytischer Funktionen durch Lineare Aggregate von Vorgegebene Potenzen, Ark. Math. 17 (1922), 1-30.
- [3] S.-Y. Chung, D. Kim and E.-G. Lee, Fourier series and periodic hyperfunctions, Preprint.
- [4] R. J. Duffin and J. J. Eachus, Some notes on an expansion theorem of Paley and Wiener, Bull. Amer. Math. Soc. 48 (1942), 850-855.
- [5] B. N. José, An introduction to the theory of distributions, Marcel Dekker, INC., New York, 1973.
- [6] N. Levinson, Gap and Density Theorems, Amer. Math. Soc. Colloq. Publ., New York, 1940.
- [7] Paley, R. E. A. C., and N. Wiener, Fourier Transforms in the Complex Domain, Amer. Math. Soc. Colloq. Publ., New York, 1934.
- [8] L. Schwartz, Théorie des Distributions, Hermann, Paris, 1966.
- [9] K. Yoneda, Uniqueness for non-harmonic trigonometric Series, Proc. Amer. Math. Soc. 124 (1992), 1795-1800.
- [10] R. M. Young, An Introduction to Nonharmonic Fourier Series, Academic Press, INC., 1980.

Department of Mathematics Sogang University Seoul 121-742, Korea

E-mail: sychung@ccs.sogang.ac.kr