Comm. Korean Math. Soc. 13 (1998), No. 3, pp. 475480

AN ISOMORPHISM FOR INFINITE
DIMENSIONAL CALCULUS

SEOK JoNG LEE AND KYUNG CHAN MIN

ABSTRACT. We show that the foundational isomorphism exists in the
category of filter convergence spaces which contains the category of
Banach spaces as a replete subcategory.

1. Introduction

It was shown recently (see [2], [5], [6]) that the basic properties of real
differential calculus arise as purely categorical consequences of a certain
natural isomorphism ed in the category of Banach spaces. The typical
component at the Banach space F,

edg : adC(I x I,E) — C(I,E), edg(A)(\) =2A(X, A)

provides an isometric representation of the familiar space C(I, E) of con-
tinuous curves I — E on the nondegenerate compact interval I. The
maps edg carry the ‘germ’ of differentiation, their inverses the ‘germ’
of integration. In (2, 6] this isomorphism evolved to form a more gen-
eral setting of infinite dimensional differential calculus as a Foundational
Isomorphism, which generates the categorical differentiation theory.

In this paper we show that the foundational isomorphism exists in
the category of filter convergence spaces which contains the category of
Banach spaces as a replete subcategory.

For general categorical differential calculus we refer to L. D. Nel (3,
4] and for the convergence space to E. Binz [1].
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2. Preliminaries

From now on I denotes the nondegenerate compact interval in R.
Top denotes the category of topological spaces and continuous maps.
Ban denotes the category of Banach spaces and linear continuous maps.

Recall that (X,&) is a filter convergence space or a Cc-space if X is a
set and ¢ is a function which assigns to every z € X a set {(z) of filters
on X subject to the following single axiom:

For every x € X, the filter generated by {z} belongs to £(x).

A map f : (X,8) — (Y,n) is called a continuous map or C.-map if
f(G) € n(f(z)) whenever G € &(z). The category of C.-spaces and C,-
maps is denoted by C,.

We already know that C. is a toponome (see [3]) in which the real field
R is structured as C.-space so that the arithmetical operations become
C.-maps. A linear C.-space is a C.-space E on which addition ExE — E
and scalar multiplication R X F — E have been defined so as to be C,-
maps, subject to the usual linear space axioms. Such spaces, together
with linear continuous maps between them, build the category LC.. It
contains Ban as a replete subcategory.

Let X be a C.-space, let E and F be LC.-spaces. Then C.(X, F)
denotes the L£C.-space of all continuous maps X — F, equipped with the
canonical mapping space structure and with pointwise linear operations.
The LC.-subspace [E, F] of C.(E, F) consists of all LC.-maps E — F.
The functors C.(X,—) and [E, —] are right adjoints LC. — LC., even
C.-enriched and LC.-enriched, respectively.

DEFINITION. [4] An analyte in LC, is a subcategory aLC. such that:

(1) aLC. is replete and reflective,
(2) aLC, is preserved by all toponomial functors Cc(X, —),
(3) aLC. has R among its spaces.

Let mLC, be the replete reflective subcategory of £C. induced by the
outer class of all monomorphisms and cLC. the subcategory of closed
embeddable £C.-subspaces. Then c£C. C mLC. C aLC, (see [4]).

Take an aLC.-space E and let adC.(I x I, E) denote the LC. subspace
of C.(IxI, E) formed by all members 2 satisfying the following additivity
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law:

(B — a)U(a, B) + (v = BYA(B,7) + (@ —V)U(7, ) =0, (7, B,y € I).

3. Construction of an isomorphism

Let E and F be cLC.-spaces. Then any LC.-map u : E — F induces
another £C.-map

Cc(l,u) : C(I,E) = C(I,F), frouolf.

Thus we have a functor C.(I,—) : c£C, — cLC,. Similarly we have a
functor adC.(I x I,—~) : cLC. — cLC,.
For cLC.-space F, consider the map

edp : adCo(I x I, E) — Co(L, E), edp(2)(A) = A(\, ).

Since the map diag : I — I x I, diag(A) = (A, ) is an embedding as
a Top-map, it becomes a C.-map. Since edp(2A) = A o diag, edg(A) is
a Cc.-map. Thus edg is well -defined. It is easy to show that edg is a
linear C.-map for all E € cLC,. In fact, edg becomes a component of a_
natural transformation in ¢£C. as follows.

THEOREM 1. For a cLC.-space E and a compact interval I, the map
edg : adC.(I x I, E) — C.(I,E), edp(A)(A) =2A(AA)
is a component of a natural transformation in the category cLC..
PROOF. For any LC.-map u : E — F, consider the following diagram.
_edp

adC.(I x I, E) —=— C.(I,E)
adc.(Ix1, u)l icc(l,u)
adC.(I x I, F) —— C.(I,F)

Since uoedg(2A)(A) = u(AA,A)) = (o AY(A\, A) = edp(u o A)(A) for all
A€ I, wehaveC.(I,u)oedg = uoedp(U) = edp(uo) = edpoadC.(I x
I,u). Hence the diagram commutes. O

Moreover we have the following result.
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THEOREM 2. The map
edg :adC.(I x I, E) — C(I, E), edg(A)(A) =2A(A\,N)

is injective for any cLC.-space E.

PROOF. Since F is a cLC.-space, it is an mLC.-space. Thus the family
{urlur : E — Ris a LC. map}rcp forms a monofamily, and hence an
injective family. Thus the family

{adCe(I x I,uy) : adCo(I x I, E) — adCc(I x I,R)}xea

is also a monofamily. Since edg is a natural transformation for F, the
diagram

adCy(I x I, E) 296XIun) e (1 ¢ I R)

EdEl ledk

C(L,E)y = (LR
commutes. That is edg 0 adC.(I x I,uy) = C.(I,uy) o edg. Note that
edg : adC.(I x I, R) — C.(I,R) is injective. Since edroadC.(IxI,uy)isa
monofamily, edg is a monofamily and hence a monomorphism. Therefore
edg is injective. O

If E = C.(X,R), the map ed¢,(xr) is an isomorphism as follows.
THEOREM 3. The map

eCIC,:(X,IR) : adcc(I X Ivcc(Xa R)) - Cc(Iacc(X’ R))) ed(m)()‘) = Q[(Aa )‘)

is an isomorphism.

PROOF. Note that the map § : C.(I,C.(X,R)) — Cc(X,Cc(I,R)),
8(f)(z)(w) = f(w)(z) is an isomorphism (see [3]). Now, consider the
following diagram

adCo(I x I,Co(X,R)) —>— Co(X,adC.(I x I,R))
edCC(X,IR) l lcc(xyedk)
Co(I,Co(X,R)) —2—  Cu(X,C.(I,R)).
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For 2 € adC.(I x I,C+(X,R)),

(8 — )§()(z)(e, B) + (v = B)§(W(2)(B,7) + (o = M§)(z)(7, @)
= (8- ) () (o, B)(z) + (v — HA(B,7)(z) + (a = 7)A(v, a)(z)

= [(B — )W), 8) + (v — BYA(B,7) + (@ = MA(7, a)l(=)
= 0(z).

Thus §(2)(z) € adC.(I x I,R). Hence §(adC.(I x I,C.(X,R)) C

Cc(X,adC.(I x I,R)). Conversely, for B € C.(X,adC.(I x I,R)),

(8~ 2§ (B)(e: ) + (v~ B)§(B)(B,7) + (@ = )§(B)(7, @)](=)

= (8- a)§ 7 (B)(a, B)(2) + (v — B)§ 1 (B)(8,7)(2)
+(a~7)§1(B)(v, a)(z)

(8 — @)B(z)(e, B) + (v ~ B)B()(B,7) + (e — 7)B(x)(7, )
01

ol

because B(z) € adC.(I x I,R). Thus §1(B) € adC.(I x I,C.(X,R)).
Hence § 1(Cc(X,adC (I x I,R))) C adCe(I x I,Ce(X,R)). Therefore
§ 1 adCe(I x I,Co(X,R)) — C(X,adC(I x I,R)) is an isomorphism.
Since edg is an isomorphism, so is C.(X,edr). Moreover, for %A €

adC.(I x I,C.(X,R)),
(Ce(X, edr) 0 8)(RA) () (1) = Cc(X, edg)§(A) () (%)
= (edr 0 §(2))(z)(2) = edr(§(A)(x))(1)
= §(™A) () (4, 2) = A%, 1)(=)

and

(§ o ede,(x,r)) () (x)(%) = §(ede, (x,r) () () (%)
= edc, (x,r) () (3) ()
— (i, 4)(z).

Thus the diagram commutes. Hence edc_(x,r) : adCc(I x I,Cc(X,R)) —
Cc(1,C.(X,R)) is an isomorphism. O
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REMARK. All the above results can be extended to a toponome(3]

ie. a cartesian closed topological construct in which all single point
spaces are discrete. Examples of toponome include the category of filter
convergence spaces, the category of sequential convergence spaces and
the category of compactly generated topological spaces.
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