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COMBINATORIAL PROOF FOR THE
GENERALIZED SCHUR IDENTITY

JAEJIN LEE

ABSTRACT. Let A be a partition with all distinct parts. In this paper
we give a bijection between the set I'y (X)) of pairs (P}, &) satisfying a
certain condition and the set 7y (X) of circled permutation tableaux
of shape A on the set X, where Pé is a tail circled shifted rim hook
tableaux of shape A and & is a barred permutation on X.

Specializing to the partition A with one part, this bijection gives
a combinatorial proof of the Schur identity:

Z ot(type()) — opnt

summed over all permutation o € S, with type(c) € OP,.

0. Introduction

There has been a recent surge of interest in the projective representa-
tions of symmetric groups and shifted tableaux. Morris[1] constructed a
projective analog of the Murnaghan-Nakayama character recurrence and
Stembridge[2] found a Frobenius-type characteristic map and an analog
of the Littlewood—Richardson rule. Sagan[3] and Worley[4] has devel-
oped independently a combinatorial theory of shifted tableaux parallel
to the theory of ordinary tableaux. This theory includes shifted versions
of the Robinson-Schensted-Knuth correspondence, Green’s invariants,
Knuth relation, and Schiitzenberger’s jeu de taquin.
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In this paper we give a bijection ¢ between the set I'y(X) of pairs
(P},5) satisfying a certain condition and the set m)(X) of circled per-
mutation tableaux of shape A on the set X, where A is a partition with
all distinct parts and where P3 is a tail circled shifted rim hook tableaux
of shape A and 7 is a barred permutation on X.

Specializing to the partition A with one part in the above, we get a
combinatorial proof of the Schur identity:

Z ol(type(a)) — op1

summed over all permutation o € S,, with type(o) € OP,.

Furthermore, using the recurrence formula for the irreducible spin
characters of the symmetric group S,, the above bijection gives us a
bijective proof for the identity

> e@)p(o™") = 2nl,

a€.§n

where ¢ is an irreducible character of S, (See Corollary 2.10 for the
definition of .S7n)

In section 1, we outline the definitions and notation used in this paper.
In section 2, we construct a bijection ¢ and explain some properties
obtained from the bijection ¢.

1. Definitions

In this section we introduce the most basic unit in this paper.

DEFINITION 1.1. A partition X of a positive integer n is a sequence

of positive integers A = (A1, A2, ..., As) such that
(1) M1 222> 2 Ay
() i di=n.

We write A - n, or |A\| = n. We say each term ); is a part of A. The
number of parts is called the length of A and is written £ = £()). We
sometimes abbreviate the partition A with the notation 1791272 ... where
j; is the number of parts of size 4. Sizes which do not appear are omitted
and, if j; = 1 then it is not written. Thus, a partition (5, 3,2,2,2,1) - 15
can be written 12335.
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NOTATION 1.2. We denote

P, = { u| p is a partition of n }
OP, ={ pu € Pn | every part of u is odd }
DP, = { p € P, | u has all distinct parts }
DP={peDP,|neN}

DEFINITION 1.3. For each A € DP, a shifted diagram D) of shape A
is defined by

Dy={(,5)€Z*|i<j<N\+i-11<i<e(\)}.

And for A, u € DP with u C X, a shifted skew diagram D) /u 18 defined
as the set-theoretic difference D) \ D).
FIGURE 1.1 shows D} and Dy, when A =(9,7,4,2) and pu = (5,3, 1).

l R [
oL
- a
D Di\/u tail head
FiGuRE 1.1 FIGURE 1.2

DEFINITION 1.4. A shifted skew diagram @ is called a single rim hook
if 0 is connected and contains no 2 x 2 block of cells. If 8 is a single rim
hook, then its head is the upper rightmost cell in § and its tail is the
lower leftmost cell in 6. See FIGURE 1.2.

DEFINITION 1.5. double rim hook is a shifted skew diagram 6 formed
by the union of two single rim hooks both of whose tails are on the main
diagonal. If 4 is a double rim hook, we denote by A[f] (resp., a1[6])
the set of diagonals of length two (resp., one). Also let (3;[6] (resp.,
71[0]) be a single rim hook in @ which starts on the upper (resp., lower
) of the two main diagonal cells and ends at the head of o;[f]. The
tail of 31(6] (resp., 11[6]) is called the first tail (resp., second tail) of
6. Hence we have the following descriptions for a double rim hook 8:
6 = AIB] U 6] = £1[6] U B216] = 71(6] U 12[0]
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Definition 1.5 is illustrated in FIGURE 1.3.

We will use the term rim hook to mean a single rim hook or a double
rim hook.

DEFINITION 1.6. A shifted rim hook tableau of shape A € DP, and
content p = (p1,-..,Ppm) is defined recursively. If m = 1, a rim hook
with all 1’s and shape ) is a shifted rim hook tableau. Suppose P of
shape )\ has content p = (p1, p2, ..., Pm) and the cells containing the m’s
form a rim hook inside A. If the removal of the m’s leaves a shifted rim
hook tableau, then P is a shifted rim hook tableau.

DEFINITION 1.7. If € is a single rim hook then the rank r() is one
less than the number of rows it occupies and the weight w(6) = (—1)"(®;
if 6 is a double rim hook then the rank r(8) is |.A[6]|/2 + r(c1[6]) and
the weight w(#) is 2(—1)"®),

The weight of a shifted rim hook tableau P, w(P), is the product of
the weights of its rim hooks.

Let P be a shifted rim hook tableau. We write kp(r) (or just «(r)) for
a rim hook of P containing r. FIGURE 1.4 shows an example of a shifted
rim hook tableau P of shape (6,5,3,2) and content (6,4,2,3,1). Here
r(k(1)) = 2, r(k{2)) = 1, 7(k(3)) = 0, r(k(4)) = 1 and r(k(5)) = 0.
Also w(k(1)) = 2, w(k(2)) = -1, w(k(3)) = 1, w(xk{4)) = —1 and
w(x(5)) = 1. Hence w(P) = (2)-(-1)-(1)-(-1)- (1) =2.
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DEFINITION 1.8. Suppose P is a shifted rim hook tableau. Pj is
obtained from P by circling or not circling the first tail and the second
tail of each double rim hook in P and is called a tail circled rim hook
tableau. We use the notation | - | to refer to the uncircled version; e.g.,
|P3| = P.

We now define a new weight function w’ for tail circled rim hook
tableaux. If 7 is a rim hook of Pj, we define w/(7) = 1. The weight
w'(P}) is the product of the weights of rim hooks in P;. Hence we have
w'(P3) = 1 for any tail circled tableau P;. If P is a shifted rim hook
tableau in FIGURE 1.4, FIGURE 1.5 shows tail circled rim hook tableaux
P

2. Combinatorial proof for the generalized Schur identity

DEFINITION 2.1. A rim hook « is called the rim hook inside X if 7 is
contained in A and its removal from X leaves another legal shape. The
shape created by the removal of 7 is denoted by A — . If v is disjoint
from A but its addition to A creates a new shape, then v is a rim hook
outside A and the new shape formed by its addition to A is denoted by
A+ ~. In FIGURE 2.1, ¢ is the rim hook inside A and 7 is the rim hook
outside A, where A = (7,4,2,1).

DEFINITION 2.2. Let A € DP and D) be the shifted shape. The
shifted hook hq of the cell & = (i,5) € A is

ha ={(6 )} V{5 15> 50 {5 1 >3 u{(+1,5) i’ > j}

with hook length h{a) = h(i, j) = |hq|. We call the sets {(z,5') | 5/ > j}
and {(7+1,7") | 7/ > 7 } the first arm and the second arm of the hook,
respectively. The set {(¢,7) | ¢ > i} is called the leg of the hook. In
FIGURE 2.2, the shaded part shows the hook h, of the a = (2,3) in the
partition A = (6,5, 3,2,1) which has hook length h(a) = h(2,3) = 7.

It is frequently necessary in discussions involving tableaux and shapes
to refer to the directions within the shape. Generally speaking, z will
be SE of y if the row of z is the same as or below the row of ¥ and the
column of z is the same as or to the right of the column of y. Also, x
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will be strictly SE of y if z is SE of y but not in the same row or same
column.

PROPOSITION 2.3. If X € DP,, there is a one-to-one correspondence
between the set D) of cells in A and the set of rim hooks inside ).

ProoF. If o € D), remove the associated hook h, from A and then
push every entry strictly SE of o diagonally NW. Then we get another
shape X', and A/X is a rim hook inside A. In fact, if hy has a second
arm, then A/} is a double rim hook with the head of 3; in the same row
as the first arm of h, and the head of 3, in the same row as the second
arm of hq. If hy does not have a second arm, then \/) is a single rim
hook whose head is in the same row as the arm of h, and whose tail is
in the same column as the leg of h,,.

This procedure is easily reversed. If 7 is a double rim hook, then the
heads of §; and B, determine the first and second arms of h,. These
determine a. If 7 is a single rim hook, then the head and tail of T

determine the row and column of a. O
I 1111
LAY, W7

W7 7%
" YR “
hoc ZA .

FIGURE 2.3
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The rim hook associated with the cell & in this manner will be denoted
rmg. Note that the size of rm, is the same as the size of h,. FIGURE
2.3 shows us the hook and the rim hook rm, associated with a.

If we use the induction on the number of rows of D), we can prove
the following lemma.

LEMMA 2.4. Let A = (A1, A2,...,¢) € DP, and let Rﬁ be the set of
cells in the kth row of D). Let

E} = {z € R} | h(z) is even} and
07 = {z € R} | h(z) is odd, h(z)# A}

Then we have
|ER| = [Oa] = [A/2].

DEFINITION 2.5. Let A € DP, and let rx = |\¢/2]. Let O and E}
be as in Lemma 2.4. Suppose we have

Oi‘ = {Tk,1,Tk,2,- -, Tk } With h(zk,1) < h(zi2) < -+ < BTk ),
Eg = {yk,1, k2, - Yhori} With h(ye,1) > A(yi2) > - > h(ye,r,)-
We define a function vy from O U E to itself via zx ; — yx; and

Yk,; = Tk,j. Then v is an involution on O U E}.
Now define v : EUO — EUO by v(z) = vk(x) if z € O} UE}, where

E=U{_,E} and
0=Ui_,0p.

Then v is also an involution on E U O.

DEFINITION 2.6. Suppose X is a set of positive integers. A permuta-
tion tableau on X is a tableau where each number of X appears exactly

once. Clearly the number of permutation tableaux of shape A on X is
| XN

Let Sx be the set of permutations on X (if X = {1,2,...,n}, Sx =
Sp). Let ¢ € Sx and write ¢ in cycle form, ¢ = 0103...0,,, where
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the cycles o; are written in increasing order of the largest in the cycle.
Content (o) of ¢ is defined as the sequence p = (p1, p2, .- -, Pm), Where
p; = |oi| =length of the cycle ;. And type (o) of o is defined as
a partition 1™12™2 .. where m; is the number of i-cycles in o. If
o € Sx, then let @ be a permutation obtained from o in which each
cycle of o is either barred or unbarred. If o = (42)(8371), @ is one of

(42)(8371), (42)(8371), (42)(8371) and (42)(8371). We use the notation

lo| to refer to the unbarred version of any ¢ € Sx; e.g., |(21)(43)| =
(21)(43)] = (21)(43).

DEFINITION 2.7. Let P be a shifted rim hook tableau of content p =
(p1y---spm)- If o' = (p1,..-,pk),k < m, then the restriction of P to
o', denoted by P|,, is the shifted rim hook tableau obtained from P by
removing all entries greater than k. If P and @ are shifted rim hook
tableaux, let PN Q denote the largest shifted rim hook tableau R which
has the property that R = P|, = Q.

Now let X = {a1 < ag < :-- < a,} be a set of positive integers and
let A € DP,. Let

TA(X) = {(P},7) | P € Ax,0 € Sx with content(P) = content(c)},

where A, is the set of shifted rim hook tableaux of shape A and Sx is
the set of permutations on X with type(o) € OP,.

Let m(X) be the set of permutation tableaux of shape A on X with
each main diagonal entry either circled or uncircled. Then we have the
following bijection from I'y(X) to mx(X).

THEOREM 2.8. Let A € DP,. Then there is a bijection ¢ from I'(X)
to ma(X).

PrOOF. We describe the bijection recursively. Suppose T' € ) (X).
Find the largest entry a, in T and let a = (Z, j) denote its cell. Some of
the steps will split into three cases. These cases are:

Case I : h(a) is odd and A(a) # A;.

Case I : h(c) is even.

Case III : k(<) is odd and h(a) = A;.

Step a.l. Modify T and determine the hook to remove. In Case II,
modify T by exchanging a, with the entry in v(c). Let 8 = v(a). In
Cases I and III, no change in T is necessary; simply let § = a.
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Step a.2. Removal of hook. Remove h; from T and push every entry
strictly SE of § diagonally NW. Call tLis ne™ permutation tableau 7".
Let b1,b2,...,b, be the entries in T in the first arm of hg (read left
to right); let c1,co,...,¢cs be the entries in T in the leg (if it exists)
of hg (read top to bottom); let di,ds,...,d; be the entries in T in the
second arm (if it exists) of hg (read left to right). Then 7" € 7y (X —
{an,b1,...,br,c1,...,¢5,di,...,d:}) = 7y (Y). Finally, let 7 be the cycle
(anbl e b,-cl e Csdl e dt).

Step a.3. Recursive step. Recursively construct (P'3 ,07) € Da(Y)
from T".

Step a.4. Determine a new rim hook. Let v be the rim hook inside X
associated with 8. That is, ' = A — . Let (p1,...,pk—1) = o’ be the
content of P’y. Define P} so that P}, = P’} and kpp(k) = 1.

Step a.5. Determine circles. In cases I and II, place a circle on the
first tail (resp., second tail) of v if the cell 8 or the leg (resp., second
arm) of hg has a circle. No circles are drawn in Case III.

Step a.6. Determine a new permutation. In Case I, let & = ¢/7. In
Case II, let @ = 0'7. In Case III, let & = o’T if hg has no circle and let
7 = o'F if hg has a circle.

Then (P3,7) € Tx(X).

This construction can be reversed easily. Suppose we were given
(P},7) € TA(X). Suppose content(P}) = (p1,p2,---,pk). Let v = k(k)
in P} and let « = (4,5) be the cell in A with ¥ = rm,. Let 7 be the
length of the first arm of h,; let s be the length of the leg (if it exists)
of hy; let t be the length of the second arm (if it exists) of h,. Write
the last cycle in || as (anb1 ...brc1...csdy ... dt). (Recall that a, is the
largest in the cycle.) Note that r + s+t + 1 = |hy| = pi.

Step b.1. Removal of the last rim hook and the last cycle. Remove the
last rim hook v from P} to get P’y = P}|(p1....pr_)- Let N denote the
shape of P’é and p’ = (p1,...,pk—1) its content. Then X = A—~. Let o/
denote the permutation on X — {an,b1,...,br,¢1,...,¢5,d1,...,d:} =Y
obtained by removing the last cycle from . Thus, (P'3,07) € T (Y).

Step b.2. Recursive step. Recursively construct 77 € mx(Y) from
(P},

Step b.3. Construction of a new permutation tableau 7" from T".
Shift every entry in 7" of a SE. Place a,, into « ; by, ..., b, into the first
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arm of h, (left to right); c1,...,cs into the leg of h, (top to bottom);
and dy,...,d; into the second arm of h, (left to right). Circle the cell @
or the main diagonal of the leg (resp., second arm) of h,, if 4 has a circle
on its first tail (resp., second tail). The resulting tableau T € m)(X).

Step b.4. Modify T” to get T. Finally define T as follows:

(1) If o has no bar on it, let T = T".

(2) If h(e) # X and ok has a bar on it, T is obtained from T” by
interchanging a, and the entry in v(a).

(3) If h(a) = A; and o has a bar on it, T is obtained from T" by
circling the tail of hy.

It is easy to see that these two constructions are inverses of one
other. O

In FIGURE 2.4-FIGURE 2.10, we give examples of each case in the
above description. In these figures, we use the alphabet 1 < 2 < .-- <
9<a<b<c In FIGURE 2.4, T is given with a marked. Since h(a) is
odd and h(a) # A;, no change in T was made (Step a.1). Next remove
he from T to get T’ (Step a.2). The recursive Step a.3 produces P’}
and o’. The h, corresponds to the rim hook 7 which is attached to P’ %
to form P} (Step a.4 and Step a.5). Finally, the cycle formed from the
entries in h, together with o’ yields 7 (Step a.6).

In FIGURE 2.5, note that h(a) is even. Hence we switch the entry “c”
in the cell @ with the entry “9” in v(a) to get the 7. Now we do the
same steps as in FIGURE 2.4 except & has a bar on its last cycle (Step
a.6).

In FIGURE 2.6 and FIGURE 2.7, depending on the circle of the tail
of hy, we place a bar on the last cycle. In FIGURE 2.8, P} and & are
given. P’ é is obtained by deleting the last rim hook ~; ¢’ is obtained by
deleting the last cycle (Step b.1). Then recursive Step b.2 produces 7".
Next T” is adjusted to make room for the last cycle (Step b.3). The last
cycle is inserted into the hook h, corresponding to v to give T (Step
b.3). Since there is no bar on the last cycle in @, we have T = T" (Step
b.4). FIGURE 2.9 and FIGURE 2.10 show examples of (2) and (3) of the
Step b.4, respectively.
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THEOREM 2.9. Let A € DP,,. Then
Z 28(type(@) (yy(P))? = 26N,

where the sum is over shifted rim hook tableaux P of shape A, and
a € S, with type(o) € OP,, content(P )=content(c).

PROOF. Let P be a shifted rim hook tableau of shape A. For each
double rim hook 7 in P, we have four tail circled tableaux depending
on circling the first tail and second tail or not. Since |w(7)| = 2 and
w'(7) =1, we have

Z zf(type(a))(w(P))2 - Z ze(type(a))w/(le)

_ ot(A

If we use the recurrence formula for the irreducible spin characters
of the symmetric group S,(see (2]), Theorem 2.9 gives us the following
identity:
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COROLLARY 2.10. For a positive integer n, let S,, be the group gen-
erated by t1,ts,...,t,_1,—1 subject to relations
2=-1 fori=1,2,...,n—1,
titi+1ti = ti+1titi+1 for i = 1, 2, ey — 2,
titj = —tjt; forli—j|>1(,7=1,2,...,n—-1).
Then
Y plo)p(a™t) = 2nl,
o€S,
where ¢ is an irreducible character of S,.
Specializing to £(A) = 1 in Theorem 2.9 we have the Schur identity.
COROLLARY 2.11. (Schur identity)

o 1
Z oir+istise. n.. : —9n!
LEOP, 171333535..._]1!]3!j5!...

u=191373535

PROOF. Set £(A) =1 in the above theorem. Then the left hand side
of Theorem 2.9 is

!
£(type(o)) . j1+ia+... n
Z 2T = Z e 1j13j3...j1!j3!...,

oc€S, ueoOP,
type(o)€OP, p=191393
while the right hand side is 2n!. O
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