616 Mot - XSt - AEl8st =21 M4 A H53 19% 10

Schema Analysis on Co—Evolutionary Algorithm
Zxst 2a2IF0l YoM 2710} 3y

Kwee-Bo Sim and Hyo-Byung Jun
AHARAFH

K] o : Holland7} A3 € 34 ¢nFe g AL S 7[Boz & & 7o) A3 o=
A, o4 ZNtege A7)t s WHES JHdo] Qi g A ¢y ESGA)e] o8 E ol&F utix &
T A3 AR A UM HHze FHE BRAA R Utk weEtA HIo F Y Ado] Mz F3F

< 8 gshs T3k Wl g3 ol2d EAE AAsE T sted B Balo] HoAn Utk # =RAME °]
A T8t Wl & FHR=AC Y o8 rwer §F 2v)ut FE AU, SGANME sHFstA Zs)
€ HH3 £A, & E% deceptive function, A SGASH FAste] o P& wingozA FFd 270 9

FEHS QG

Keywords : SGA, co-evolutionary algorithm, schema theorem, building block hypothesis

1. Introduction

The concept of natural selection has influenced our
view of biological systems tremendously. As a result
of trying to model the evolutionary phenomena using
computer, evolutionary algorithms came up in 1960s
through 1990s. Typically genetic algorithm(GA),
genetic programming(GP), evolutionary strategies(ES),
and evolutionary programming(EP) belong to the
categories of EAs, and these have been successfully
applied to many different applications according to
the solution representation and genetic operators. The
genetic algorithm was proposed by]J. H. Holland[1]
as a computational model of living system’s evolution
process and a population-based optimization method.
GA can provide many opportunities for obtaining a
global optimal solution, but the performance of a
system is deterministic depending on the fitness
function given by a system designer. Thus GA
generally works on static fitness landscapes.

However natural evolution works on dynamic
fitness landscapes that change over evolutionary time
as a result of co-evolution. Also co-evolution
between different species or different organs results
in the current state of complex natural systems. In
this point, there is a growing interest in co-evolu-
tionary systems, where two populations constantly
interact and co-evolve in contrast with traditional
single population
evolutionary algorithms. This co-evolution method is
believed more similar to biological evolution in nature

He4dA 1 1998 5. 6, FHGE 1 1998 7. 18
AR FYUGT BARAFHR
AEY : FYURSE A Z S

¥ This work was supported by a grant No. KOSEF 96-0102-

13-01-3 from Korea Science and Engineering Foundation.

than other evolutionary algorithms. Generally co-
evolution algorithms can be classified into two
categories, which are predator-prey co-evolution[2]
and symbiotic co—evolution[3][4]. Also a new fitness
measure in co-evolution has been discussed in terms
of "Red Queen effect”[5].

In this paper, we derive an extended schema
theorem associated with a host-parasite co-evolu-
tionary algorithm, where the fitness of a population
changes according to the evolutionary process of the
other population. Also we presents how a symbiotic
co—evolutionary algorithm works including fitness
measure. Host—parasite coevolutionary algorithm has
two different, still cooperatively working, populations
called as a host-population and a parasite—population,
respectively. The first one is made up of the
candidates of solution and works the same with
conventional genetic algorithm. The other one, a
parasite—population, is a set of schemata, which is to
find useful schemata called "Building Block”[6][7].
Using the conventional genetic algorithm the
host-population is evolved in the given environment,
and the individual of the host-population is
parasitized by a schema in the parasite-population
evolving to find wuseful schemata for the host
population. As a result of co-evolution the optimal
solution can be find more reliably in a short time
with a small population than SGA. We show why a
co-evolutionary algorithm works better than SGA
and demonstrate the comparative results in solving a
deceptive and a false-peaks functions.

In the next section, the simple genetic algorithm
and schema theorem are reviewed, and in section II
we explain the co-evolutionary algorithm and derive
an extended schema theorem. Then we demonstrate
that the co-evolutionary algorithm with the extended

Journal of Control, Automation and Systems Engineering, Vol. 4, No. 5, October, 1998 617

schema theorem works better than SGA in solving a
deceptive and a false-peaks functions. Finally the
paper is closed with conclusions including some
discussions about future research.

II. Simple genetic algorithm and schema theorem(6][7]
A simple genetic algorithm proposed by John
Holland is a global search technique based on
Darwin’s theory of natural evolution. It uses a
population of genotypes composed of fixed-length
binary strings, called chromosome. And SGA
evaluates a population of genotypes with respect to a
particular environment. The environment includes a
fitness function that rates the genotype’s viability.
Genotypes reproduce proportionally to their relative
fitness using a variety of genetic operators. One
operator, termed crossover, uses the recombination of
two parents to construct novel genotypes. The
mutation operator creates new genotypes from a
single parent with a probabilistic alteration.
The theoretical foundations of genetic algorithms
rely on a binary string representation of solutions,
and a notion of a schema. A schema is a subset of
the search space, which match it on all positions
other than don’t care symbol(*). There are two
important schema properties, order and defining
length. The number of 0 and 1 positions, i.e., fixed
positions is called the order of a schema H{(denoted
by o(H)). And the defining length of a schema H is
the distance between the first and the last fixed
string positions(denoted by & (H)). For example, the
order of ***00**1** is 3, and its defining length is 4.
An instance of a schema H is a bit string which has
exactly the same bit values in the same positions
that are fixed bits in H. For example, 1000, 1010,
1100, and 1110 are instances of a schema 1#x*0.
Another property of a schema is its fitness at
generation k, denoted by f(H, k). It is defined as the
average fitness of all strings in the population
matched by that schema H. Then
x;,”f(x,k)
AH, k)=—m_(H,—E)_ o))
where fix,k) is the fitness of an instance x of a
schema H, Iy is a set of instances of a schema H at
current generation, and m(H,k) is the number of
instances of a schema H at generation k. By the
effect of the fitness proportionate selection without
crossover and mutation, the expected number of
instances of a schema H in the population can be

described as
x;ﬁf(x, 1)
AR

where Ak is the average fitness of allindivi-
dualsin the population at generation k. Then we can

m(H,k+1)= (2)

rewrite the above formula taking into account
equation (1):

__RKH.KB
m(H, k+1)= 0 m(H, k) 3)

This equation means that if the fitness of a
schema H is above the average fitness of the popu-
lation, termed above-average, that schema receives
an increasing number of strings in the next generation,
a below-average scheme receives decreasing number
of strings, and an average schema stays on the same
level. In other words, an above-average schema
receives an exponentially increasing number of
strings in the next generation.

Now we discuss the effects of crossover and
mutation on the expected number of schemata in the
population. It should be clear that the defining length
of a schema plays a significant role in the probability
of its destruction and survival. Thus the probability
bq of destruction of a schema H under the uniform

crossover is
H=p,- S8(H)
pdc(— pc (l_ 1) (4)

where [is the number of bits in a string, and p.

is the crossover rate. Consequently, the probability of
schema survival p(H) is

—1—p - XE_

Because even if a crossover site is selected
between fixed positions in a schema, there is still a
chance for the schema to survive, equation (5) should
be modified as follows:

p(H)>1~—p.- %f—% 6)

This equation gives a lower bound on the
probability p.(H) that will survive single-point
crossover, in other words upper bound on the
crossover loss which is the loss of instances of a
schema H resulting from crossover.

And the destructive effects of mutation can be
quantified from the mutation probability ,, and the
order of a schema H. Since a single mutation is
independent from other mutations, the probability p,
of a schema H surviving a mutation is

Pl D=1 — p) ™. @

Since »,<1, this probability can be approximated
by:

Pl H)=1—p,, + o(H) ®)

From the equations (3), (6) and (8), the combined
effect of selection, crossover, and mutation on the
expected number of a schema is formulated by:

m(H,k+1) >LEB gy
5
J1=pe B = b o).

9)

618

This is known as the Schema Theorem and means
that the short, low-order, and above-average schema,
called as the Building Blocks, would receive an
exponentially increasing number of strings in the
next generations. However if there does not exist a
solution in the Building Blocks, simple genetic
algorithm might fail to find that solution. The
deceptive function is most well known as a problem
violating above theorem. T. Kuo and S. Y. Hwang[8]
showed that disruptive selection works better than
directional selection on the deceptive functions.

In the next section we derive an extended schema
theorem associated with a co-evolutionary algorithm,
and show that it covers the deceptive functions.

. Co-Evolution and extended schema theorem

Recently evolutionary algorithms has been widely
studied as a new approach to artificial life and as a
function optimization method. All of these typically
work with a single population of solution candidates
scattered on the static landscape fixed by the
designer. However in nature, various feedback mech-
anisms between the species undergoing selection
provide a strong driving force toward complexity.
Also natural evolution works on the fitness land-
scapes that changes over the evolutionary time. From
this point of view, co—evolution algorithms have
much attractions in intelligent systems.

Generally co-evolutionary algorithms can be
classified into two categories, which are predator—
prey co-evolution and symbiotic co-evolution. In the
next two sub-sections, we review them in brief.

1. Predator-Prey Co-Evolution

Predator-prey relation is the most well-known
example of natural co-evolution. As future genera-
tions of predators develop better attacking strategies,
there is a strong evolutionary pressure for prey to
defend themselves better. In such arms races,
success on one side is felt by the other side as
failure to which one must respond in order to
maintain one’s chances of survival. This, in turn,
calls for a reaction of the other side. This process of
co-volution can result in a stepwise increase in
complexity of both predator and prey(2]. Hillis[4]
proposed this concept with a problem of finding
minimal sorting network for a given number of data.
And co-evolution between neural networks and
training data was proposed in the concept of
predator and prey[9].

And fitness measure in co-evolution is studied in
terms of dynamic fitness landscape. L. van Valen, a
biologist, has suggested that the "Red Queen effect”
arising from co-evolutionary arms races has been a
prime source of evolutionary innovations and
adaptations[5]. This means that the fitness of one

ROt - KISt - AREEBSt =2K R4 2 K535 198 10

species changes depending on the other species’s.
2. Symbiotic Co~Evolution

Symbiosis is the phenomenon in which organism
of different species live together in close association,
resulting in a raised level of fitness for one or more
of the organisms. In contrast of predator-prey, this
symbiosis has cooperative or positive aspects between
different species.

Paredis[3] proposed a symbiotic co-evolution in
terms of SYMBIOT, which uses two co-evolving
populations. One population contains permutations
(orderings), the other one consists of solution candi-
dates to the problem to be solved. A permutation is
represented as a vector that describes a reordering of
solution genes. And another approach to symbiotic
co-evolution is host-parasite relation. Just as do other
co—evolutionary algorithms, two co-evolving popu-
lations are used. One is called host-population which
consists of the candidates of solution, the other
contains schemata of the solution space. This idea is
based on the Schema Theorem and the Building Block
Hypothesis described in section 1II.

The individual of the host-population is parasitized
by a schema in the parasite-population. By this
process, useful schemata generates much more
instances in host population at the next generation.
We restrict our attention to this host-parasite relation,
to show the effect of parasitizing process mathe—
matically by an extended schema theorem associated
with host-parasite co—evolution.

3. Pracess of host-parasite co—evolution

As above-mentioned, the parasite-population searches
useful schemata and delivers the genetic information
to the host-population by parasitizing process. We
explain this parasitizing process by means of fitness
measure of the parasite-population and the alteration
of a string in the host-population according to the
fitness measure.

The fitness of a schema in the parasite-population
depends on n strings sampled in the host—-population.
In the context of a computational model of co-
evolution, the parasitizing means that the characters of
a string are exchanged by the fixed characters of a
schema. The other positions of the string, ie, the
same positions of don’t-care symbol in the schema,
hold their own values. The process of host-parasite
co-evolution, in brief, is that a useful schema found
by the parasite-population is delivered to the host-
population according to the fitness proportionate, and
the evolutionary direction of the parasite-population is
determined by the host-population.

The fitness F, of a string y in the parasite-
population is determined as follows:

Step 1 : Determine a set of strings of the host-
population to be parasitized. Namely select randomly n

Journal of Control, Automation and Systems Engineering, Vol. 4, No. 5, October, 1998 619

strings in the host-population, which are parasitized
by a schema v.

Step 2 : Let the sampled strings as x,,x,, and
the parasitized strings as %;,, -, %n. A parasitized
string is a sampled string after parasitized by a
schema y.

Step 3 : In order to determine the fitness of a
string y in the parasite-population, we set a fitness
function of one time parasitizing as improvement of
the fitness.

Fo(B=max(0,Axg B — fx, H] (i=1,,n) (10)

where Ax, k) is the fitness of a string «x; at
generation k, and Ax, k) is the fitness of a string
%5 which is parasitized by a schema v.

Step 4 : Then the fitness Fy of a schema y in the
parasite-population is
F,= 35 an
By exchanging a string x; for #, which is a
string having maximum value of 7, , still one of the
strings parasitized by a schema y, the genetic
information acquired by parasitizing is\ delivered to the
host-population. And as described in equation (11), the
fitness of a schema in the parasite—population is
depending on the parasitized strings in the host-
population. In the next sub-section, we derive an
extended schema theorem associated with this host-
parasite co-evolution.
4. Extended schema theorem
If a string y in the parasite-population represents a
schema H, it is clear that the above parasitizing
process can be interpreted, in the context of useful
schemata, as a process of increasing the number of
instances of a schema H in the host-population. If we
recall the original schema theorem, the number of
instances of a schema H at the generation k is
changed by the amount of newly generated instances
of that schema. When the co-evolution is considered
the number of instances »'(H, % of a schema H in
the host-population at the generation k is expressed
by
m' (H, k)= m(H, k) + m(H, k) (12)

where m(H, k) is the original number of instances
of a schema H in the host-population, and m(H, k) is
the increased number of instances by the parasitizing
process. Thus it can be stated as follows:

w(H, k)=% lg{sgn[Rz B — Rx, D1+1) (13)

where sgn(u) is a sign function that equals +1 for
positive z and -1 for negative u. Note that since we
focus on the newly generated instances after parasi-
tizing, the case that x; is identified with %z is

excluded from the equation (13). This equation means
that since the string x; is exchanged for iz in the
case that the degree of improvement in the fitness is
above 0, the instances of a schema H in the
host-population are increased.

Also we can formulate the fitness of a schema H
associated with host-parasite co-evolution from its
cdefinition. Let us denote by f '(H, k) the fitness of a
schema H after parasitized at the generation k. Then

2 fx,B)+ 2 Axan B

XEiy 1y
m(H, B+ m(H, k)
where Iy is a set of instances of a schema H at

fF(H k= (14)

the generation k and [is a index set of increased

instances of a schema H after parasitized. Combining
the above equations, the schema theorem can be
rewritten by
m(H k+1) = (H, /re)-~ﬂ—f(%’;)ifl 15
(1=t S).

Since the fitness of a schema H is defined as the
average fitness of all strings in the population
matched by that schema H, the fitness 7 '(H, %) of a
schema H after parasitized can be approximated by
F(H,H=FfH,$. Especially, if the number of strings
in the host-population Ng>»#n, where n is the number

of strings to be parasitized, the above approximatiorn
makes sense for the large number of generation
sequences(6].

Consequently we obtain an extended schema
theorem associated with host-parasite co-evolution
that is

m(H D 2 Um(H, B+, o) LA)

Jr=pe S —p, - o).

Compared with the original Schema Theorem in
equation (9), the above equation means that the
short, low-order, and ahove-average schema H
would receive an exponentially increasing number of
strings in the next generation with higher order than
SGA. Additionally the parasitizing process gives
more reliable results in finding an optimal solution.
Because the parasite-population explores the schema
space, a global optimum could be found more reliably
in shorter time than SGA. When the schema
containing a solution does not exist in the population,
SGA may fail to find global optima. In the other
hand, because the useful schema can be found by
the parasite-population, co—evolution gives much
more opportunities to converge to global optima.

In the next section, we compare the performance
of host-parasite co—evolution with that of SGA in
solving a false-peaks problem and a deceptive
function.

620

IV. Numerical analysis
1. False-peaks problem
In this section, we consider a false-peaks function
which has several false peaks. If there are ten
boolean variable xxy-:x); which are used as a string,

the function and its fitness are defined as
f = AN Ax VAT A%y ANxg) (A7)

2 rry 2
Fit(p= max{\} At 10+"‘° ,

J B+ 1—x) -+ (1L~ xy)° }
11

We plot the landscape of its fitness function where
the horizontal axis is the decimal number of the
binary string. As shown in Fig. 1, there is one
optimal solution which are all 1’s. However it is easy
to see that there are several false local optima
including all (’s. These features imply that worst
solutions have a greater change of being mutated
into optimal solutions and that better solutions are
prone to be mutated into local optima.

We tested this problem with SGA and then the
host-parasite co-evolution. The population size of
SGA is set for 80, the crossover rate is 0.6, and the
mutation rate is set for 0.02. The host and
parasite-population sizes of co-evolution are set for
20, respectively, and the same rates of crossover and
mutation are used. The sampling size n is set for 3.
Therefore the total evaluation number per each
generation is 20 + 20 X 3, that is the same number
of the population size of SGA.

The results are plotted in Fig. 2 which shows the
schema changes versus generation when searched by
SGA and the host-parasite co-evolution, respectively.
In this results, we can see that the useful schema
which starts with 1 does not increase in SGA. This
is caused by false peaks which start with O.
Especially whether SGA succeed in finding a optimal
solution or not depends on the randomly generated
initial population. Namely, if the initial population
consists of the deceptive schemata mainly, frequently
SGA fail to find an optimal solution.

In the other hand, the host-parasite co-evolution
gives more reliable guarantee of the convergence
irrespective of the initial population. As shown in
Fig. 2, even though there exists a small number of
the useful schema 111#*#**** in the initial population
the number of instances of that schema increase
exponentially. However the deceptive schema
Oxxx4xxxx contained in the initial population decrea-
ses as generations go on. This results imply that the
parasitizing process plays an important role in
escaping the local optima.

Another merit of the host-parasite co-evolution is
the fast convergence with small population. Since the

(18)

MO - XiSat - AMEISS =2 M4 A R538

1998. 10

ssaUIy
o
o o
o ©

0.75 ’\; i

bk A iy

01002003004085005007008009001000
Genotype

Fig. 1. Landscape of a false-peaks function in
search space.

Tk hdnt

o 1 akdedededen

BEIGIS JO Saquany
8

20

S h N ’
[tV 1 e N
000 deederiv e

Q0w ks
1 1 1 i I
o 16 20 30 40 50

Generation

(a) SGA

2

(22 T I

T dedektedrde

BUIYIS jO LIQUEIN

Tin sk idnsn

A VA

INA LN VAN
20 30 40 S0
Generation

(b) Host-parasite co—-evolution
Fig. 2. Schema changes.

behavior of genetic algorithm is stochastic, its
performance wusually varies from run to run
Therefore we replicated 50 runs on this false-peaks
function for each combination of the following
parameter settings: p. = 035, 0.6, 095 and p,,=05,
0.1, 0.02, 0.001. Here p. and p,, represent the cro-
ssover rate and mutation rate, respectively. Each
search was run to 50 generations. Table 1 shows the
number of successful runs out of 50 runs and
average generation of those successes for each com-
bination of the parameter settings. The other

Journal of Contral, Automation and Systems Engineering, Vol. 4, No. 5, October, 1998 621

parameters were used the same as described above.
These results show that host-parasite co-evolution
(CEA) perform better than SGA.

Table 1. The number of successful runs out of 30

runs.
Number of success Avg. generation

be | Pm of success
SGA CEA SGA CEA
0.001 3 36 34.33 4.75
0.35 0.02 4 39 28.50 4.68
' 0.1 2 28 20.00 5.38
0.5 2 40 31.50 5.72
0.001 3 33 16.33 4.92
0.60 0.02 5 40 3540 5.17
’ 0.1 2 42 28.00 3.72
0.5 1 28 25.00 3.48
0.001 2 33 16.00 4.10
0.95 0.02 2 32 34.50 3.11
’ 0.1 2 34 22.00 4.09
0.5 4 35 27.50 3.24

2. Deceptive function
A deceptive function is a function for which SGA
is prone to be trapped at a deceptive local optimum.
Here we consider a deceptive function f(x,x3x3)
shown in Fig. 3. The fitness values for each string
are F(000)=28, fF(001)=26, f(010)=22, £(011)=9,
F(100) =14, FQ0D=0, f(110)=0, and f(111)=30.
Although £(111) is the maximum, the fitness of a
schema containing 0 is always higher than that of a
schema containing 1 as described in equation (19).
Therefore this function is called as a deceptive one
with order 3.
FO==%) > F(1*=%), f(*x0*) > f(x1%*)
F(x%0) > f(x=*1), f(00=*)> f(11%)
FCO=0) > F(1*1), f(x00)> F(*11) (19)
Now, we consider a higher order deceptive
function which consists of ten sub-deceptive
functions. Here a sub-deceptive function is Axxyxs)
described above. Therefore the length of a string
becomes 3X10, and the function value is given by
sum of the ten sub-functions. Thus,
F(xy %025 5x5) = £(2, %o%3) + F(x4x5%6) + -+ f(xogx09705) (20)
Therefore the optimal solution becomes 30X 10. We
replicated 50 runs on this deceptive function for each
combination of the following parameter settings: p.
=0.35, 06, 095 and »,=05 0.1, 002, 0.001. Each
search was run to 50 generations. The population
size of SGA is 2500. The host-population and
parasite-population sizes are 500 and 400, respecti-
vely. Sine the sampling size is set for 5, the number
of evaluation per generation equals that of SGA.
Table 2 shows the number of successful runs out
of 50 runs and average generation of those successes

sy

0 1 2 3 4 5 B 7
Genotype

Fig. 3. Landscape of a deceptive function in search
space.

for each combination of the parameter settings.
These results show that SGA could not find an
optimal solution for any combination of p. and p,..

This could be Dbecause decep—tive schemata
containing 0 prevented SGA from escaping local
optimum. However, host-parasite co-evolution (CEA)
found the solution very fast. This could be because a
useful schema was generated newly by the
parasitizing process and was prevalent in the
host-population. This is a conventional problem
violating the Schema Theorem and the Building
Block Hypothesis. However, using parasitizing
process, this problem could be overcome.

Fig. 4 shows the schema changes versus gener—
ation when searched by SGA and the host-parasite
co—evolution, respectively. The crossover rate and
mutation rate are set for 0.6 and 0.02, respectively.
The other parameters were used the same as

mentioned above. In SGA the initial population

contained almost the same number of schemata,
however at the generation 50 a deceptive schema
00**---x* increased by twice of the other schema.
This can be interpreted that above-average schema
would receive an exponentially increasing number of

Table 2. The number of successful runs out of 50

runs.

Avg. generation

5 s Number of success of success
SGA CEA SGA CEA
0.001 0 48 -- 8.85
0.02 0 30 —-- 13.13
035 0.1 0 50 -- 8.74
0.5 0 48 ~- 12.71
0.001 0 49 —= 8.24
0.02 0 38 - 9.92
060 0.1 0 42 -= 11.31
05 0 31 -- 10.45
0.001 0 38 —— 9.68
0.02 0 44 -= 8.30
0.9 0.1 0 39 —— 10.26
0.5 0 46 —= 14.04

622

strings in the next generation. Therefore the optimal
solution could not found by SGA.

In the other hand, the host-parasite co—evolution
gives more reliable guarantee of the convergence
irrespective of the initial population. As shown in
Fig. 4, the number of instances of the useful schema
11#%---%x increases exponentially and that schema
prevails in the population. The deceptive schema 00*
x---x% ncreased a little bit at the initial phase, but it
decreased to zero as generations go on. This results
imply that parasitizing process gives a chance to
escape the local optimum and thus gives more
reliable guarantee of the convergence to the global
optimum.

1500(
1875+
V4
13
g
g
b
3
2 18 (0ksseskh
g | .
- TN T
—————————— Tingskt
Dbaeeas |nt~ﬂ
I !] I J
0 10 20 30 40 5
Generation
(a) SGA

wagIs jo JaquinN

Generation

{b) Host-parasite co-evolution

Fig. 4. Schema changes.

MOt - XISgt - ArEsst =2A1 K4 & X5F 1998 10

V. Conclusion

In this paper we derived an extended schema theor
em associated with host-parasite co-evolution and sh
owed some comparative results. Even though the orig
inal Schema Theorem and the Building Block Hypoth
esis give theoretical foundations to SGA, some proble
ms, such as deceptive functions, are hard to be solve
d by SGA. However co-evolutionary algorithm where
two populations constantly interact and co—evolve in
contrast with traditional single population evolutionary
algorithms solved those problems more reliably. Also
it gives much more hances to find global optima than
SGA because the parasitepopulation searches the sche
ma spaceln this paper our study is restricted on the
host—parasite co—evolution, so the other co-evolutiona
ry algorithms including predator-prey co—evolution sh
ould be studied in terms of theoretical foundations in
the future. It remains the future works.

References

(11 J. H. Holland, Adaptation in Natural and
Artificial Systems, Univ. Mich. Press, 1975.

21 S. G. Bullock, “Co-Evolutionary design
implications for evolutionary robotics,” The 3rd
European Conference on Artificial Life, pp.
1975.

[3]1 J. Paredis, “Co-Evolutionary computation,”
Artificial Life, vol. 2, no. 4, pp. 353-375, 1995.

[41 W. D Hillis, “Co-Evolving parasites improve
simulated evolution as an optimization proce-
dure,” Artificial Life II, pp. 313-324, 1991.

[51 D. Cliff, G. F. Miller, “Tracking the red queen :
measurements of adaptive progress in co-
evolution,” COGS Technical Report CSRP363,
Univ. of Sussex, 1995.

[6] Z. Michalewicz, Genetic Algorithms+Data
Structures= Evolution Programs, Second
Edition, Springer-Verlag, 1995.

[7] Melanie Mitchell, An Introduction to Genetic
Algorithms, A Bradford Book, The MIT Press,
1996.

[81 T. Kuo and S. Y. Hwang, “A genetic algorithm
with disruptive selection,” IEEE Trans. on
Systems, Man, and Cybernetics, vol. 26, no. 2,
pp. 299-307, 1996.

O] D. W. Lee, H . B. Jun and K. W. Sim, “A
Co-Evolutionary approach for learning and
structure search of neural networks,” Proc. of
KFIS Fuall Conference ’97, vol. 7, no. 2, pp.
111-114, 1997.

Journal of Control, Automation and Systems Engineering, Vol. 4, No. 5, October, 1998 623

AR

19843 Fddigtn AxFet =<,
oy 4AK1986'd), The Univer-
sity of Tokyo H7|xx1g8tz ulA}
(1990) 19909 FAUE Aar|e&d

nk | 7 27279 1wea-ad o
AT =8x HIAYY 2L 7k}, 1988 - FA|
G2 B A" &3 oAl 1991d-FA F4
g AAA|FERE Eug drpAdEols AT,
TE-HA R AXE AFE g5 2 A3 dndF A
A 2E, ASEE B AdeeE 2R A5AY A
28" 28HH AANEE, A3sE =], vlelaz
A7\ A 265,

dsd

19979 ZGUstEm Ao ASF 8}
29, 19979-8A Foistd Ao}
e zREs 8 ASFR A
W AR 4ARA, FRYRRE 2

2%, #A, J5d, ek, A

