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Fast Hartley Transform Technique as a Efficient Tools
for Gravity Field Modelling
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ABSTRACT

This paper deals with gravimetric geoid determination by Fast Hartely transform (FHT) technique in and
around the Korean peninsula. A number of data files were compiled for this work, containing now more than 69,
001 point gravity data on land and ocean areas. Especially, regression was applied to estimate gravity anomalies
in the northern area of peninsula. For evaluating accuracy of geoid obtained, GPS/Leveling data of 49 stations
were prepared. EGM96 global geopotential model to degree 360 was used in order to determine the long
wavelength effect of geoid undulations. By applying the remove-restore technique geoid undulations were det-
ermined by combining a geopotential model, free-air gravity anomalies. Fast Hartley Transform technique is a
suitable solution that uses the advanced spectral technique on the sphere. It was applied to predict geoid un-
dulations by Stokes's integral. Accuracy of geoid undulations was evaluated by comparing with results derived
from GPS/Leveling. Standard deviation of differences is about 33 cm.
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1. Introduction

With the successful development of the Global
Positioning System, geoid determination enjoys a
renewed popularity. In many positioning, mapping
and exploration applications, conventional sprit
leveling is being replaced by orthometric height
determination using GPS and the geoid. By using
GPS, three-dimensional coordinates or coordinate
differences are obtained in a cartesian frame, and
the X, Y, Z coordinates obtained are -easily

*Lecturer, Department of Civil Engineering, Sungkyunkwan
University

convertible into ellipsoidal coordinates-latitude,
longitude and height above the ellipsoid. However,
the conversion of ellipsoid;l height into an
orthometric height requires an accurate geoid
undulation. The relative accuracy of the
gravimetric geoid undulations should meet at least
the same accuracy level (see, e. g., Schwarz et at.,
1987; Li, 1993),

This means that by combining relative ellipsoidal
heights Ah from GPS and relative geoid undulations
AN, orthometric height differences can be
determined (AH =Ah-AN), provided AN is of the

same accuracy as Ah. To achieve such accurate
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results, more advanced methods currently available
for gravimetric geoid determination should be used
and different data types should be optimally
combined (see, e.g., Tziavos, 1993). GPS highlight-
ed the necessity of an accurate geoid model.
Especially in order to meet the needs of geodetic
leveling, a geoid of centimeter precision level should
be provided.

The main goals of this paper are to introduce the
Fast Hartley Transform and its application in
physical geodesy, and to determine the geoid surface
in and around the Korean peninsula using all
available surface gravity data, estimated gravity data
and a global geopotential model (EGM96). By
applying the remove-restore technique, gravimetric
geoid undulations were determined.

2. Solutions to the Geodetic Boundary
Value Problem

The well-known Stokes formula for the geoid
undulations relative to the reference ellipsoid is

= % [ 2eswpdo @)

where R is mean radius of the earth, and ©
denotes the earth’s surface. S(y) is the Stokes
function and is given by the expression

S(I[I):oosec(%)—6sin(%)+l—5 cos (y)
—3cos(|p)1n[sin(7w)+sin2(%)] )

where y is the spherical distance between the data
and the computation point. For small distances
inside an area E, we can use the planar
approximation, where the first term of S(y) is the
dominant one. Thus we have

1 _2_2R )
sin(w2) ~ w1
R%d 0= dxdy 6]

and equation (1) reduces to

22 4xdv =
e J’ jE dxdy = ——SAO' 5)
I=[(x-xp P+(y—yp P> (6)

where (x, y) are the coordinates of the data point
and (x,, y,) are the coordinates of the computation
point and S is Stokes operator.

3. Practical Determination of Geoid

3.1 Pre-processing and Post-processing

The use of Stokes' equation (1) requires gravity
anomalies all over the earth for the computation
of a single geoid undulation. Obviously, this is
impractical to say the least and thus, in practice,
some modifications of technique are necessary. If
we apply equation (5) instead of equation (1) in a
certain region, long wavelength contributions of
the gravity field will not be present in results and
must be computed in another way. They are
provided by a set of spherical harmonic coeffi-
cients (geopotential model, GM). Also, due to the
density of gravity data, which on the average is
no better than 5 X5, short wavelengths will not
be present. They are computed by using
topographic heights, which are usually given in
the form of a 1km by 1km Digital Terrain Model
(DTM). These frequency contributions are shown
in Fig. 1.

Computation of geoid undulations N by
combining a GM, mean free-air gravity anomalies
Agra, and heights H in a DTM is based on the
following formula (Vanicek and Christou, 1994):

SMOOTHED GEOI0

100 km

—__, \
ELULIPSOIO

Fig. 1. Contributions of different data to regional geoid
determination
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N =Ngy+Ny +Ny @)

Ag = Aga—Agy ®

Although geoid undulations are more sensitive to
the low to medium frequencies of the field, in rough
topography all the data sets are necessary for
estimating N. Note that gravity anomalies used with
Stokes’
topography and the GM removed. Thus, pre-

equation have the contributions of the

processing stage involves the computation and
removal of the GM and terrain contributions from
free-air gravity anomalies and post-processing step
involves restoration of the GM contribution and the
terrain contribution to N via indirect offset term Ny.

3.2 Computation of the GM-Contributions
Expression for geoid undulations derived from a
geopotential model, Ngy, takes the following form

Twe @ _ -
Ngu = M { Z z (%)"[Cmm cos mA + Symsin mA]

n=2 m=0

—an(sin(p)] )

Latitude

124.00 125.00 120.99 127.00 (20,00 129.00 139.08 131.08
Longttude

Fig. 2. Geoid Undulation based on the EGM9%6 geo-
potential model to degree 360. Contour Inter-
val : 25 cm

where C.,, S,. are fully normalized harmonic
coefficients of the anomalous potential, Pon (sin ¢)
are fully normalized Legendre functions, and n,,
is the maximum degree of geopotential model.
Simple application of the so-called fundamental
equation of physical geodesy together with Bruns
equation enables sum of the harmonic components
of gravity anomalies up to any given degree to be
calculated from the same series as geoid un-
dulations, namely

Aggy = GM [ t zn: (n-1) (%)“ [Emm C0S MA+ S si0 mA]
2 =2 m={}
Pu(sing) } (10)

where Agey is the total components of gravity
anomaly up to degree ng,,.

For the determination of the long wavelength
part of geoid undulations, various geopotential
models are available. Tests were carried out to find
which of current model is the best to use as a
reference model for the Korean peninsula. Com-

12300 12400 125'.)120'.00 127.00 126.00 125.00 130.00 131.00 132.00
Longitude

Fig. 3. Differences between gravity anomalies implied

by the OSU91A and EGM96 geopotential

models. Contour Interval : 1 mGal
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parison of solutions with gravity data, GPS data
and each models in the Korean peninsula showed
that the OSU91A model to degree 360 fit the best
(Yun and Adam, 1994, Yun, 1995). New
geopotential model (EGM96) announced in Oct.
1996 was tested and compared to the OSU91A. It
was shown that there is no large difference
between these two models in the southern area of
the Korean Peninsula as shown in Fig. 3.

3.3 Computation of the Ag-Contribution

Hartley (1942) proposed the use of a new kind
of transform which is expressed in a more
symmetrical form between the function of original
real variable and its transform, which forms the
basis for present discrete formulation. For this
reason, it was appropriate to name the Discrete
Hartley Transform (DHT) and the Fast Hartley
Transform (FHT), which was derived from Hartley
s original idea, in his honor (Li and Sideris 1992).

The Hartley transform can also be performed by
a fast digital processing, convolution and
correlation etc. algorithm. The FHT is as fast as or
fast than the FFT and serves for all the uses, such
as spectral analysis, to which the FFT is at present
applied. In the real and imaginary parts of the
Fourier transform or the power spectrum are the
desired products, they can be obtained directly
from the DHT. Convolution or correlation
algorithm can be further simplified if one of
functions is even, which is the case usually
occurring in physical geodesy, such as the kernels
of both planar Stokes formula and the terrain
correction formula.

3.3.1 Definition of the 2-D Continuous Hartley
Transform

Hartley (1942) defined a more symmetrical 1-
dimensional Fourier transform as follows

H(w)=|_h(tycas 2m et dt (11)

h)=[" H(wxas2ratda (12)

where cas x = cos x+sin x.

Because transform pairs (11) and (12) was first
defined by Hartley, (11) is called the direct Hartley
transform and (12) is called the inverse Hartley
transform (Bracewell, 1983 and 1986)

H(u, v)=H{h(x,y)}
= J_: _[_: h(x, y)casux casvy dxdy 13)

H(x,y)=H"'{h(u, v)}

= # J_: I_: h(u, v)casux casvy dudv (14)
where H and H' is the direct and the inverse two
dimensional Hartley transform operators.

Let
u=2nky, v=2nky (15)

and substitute equation (15) into equation (13) and
(14) to get

H(kx, ky) =H {h(x, )}
= [ | h(x, y)eas 2mkyx cas 2mky dxdy (16)

h(x, y) = H! {H(k, k,}
= | |7 H(k, ky)cas 27kix cas 2k, dkx dky 17

the Hartley transform pair (13) and (14) or (16)
and (17) can be simply denoted by

h(x, y) <=> H(u, v) or h(x, y) <=> H(ks, ky) 18)

3.3.2 The 2-D Discrete Hartley Transform (2-D
DHT)

Here, we can define the Hartley transform of a
function given at M XN discrete points on a grid
of X and Y coordinates for periods T, and T,, the
intervals (grid spacings) are given by

Tx Ty
AX'_——,A =— 19
M y M (19)

and the coordinates at node (k, 1) are

x, =k4x, k=0,1,.,M-1 (20)
y,=14x, 1=0,1,....N-1 (21)
Let
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1 1

A , Av= — 22

u=o-, dvs T (22)
um =mAu, m=0,1,....M—1 (23)
va=n4v,n=0,1,....N—1 (24)

We can define the two dimensional discrete Hartley
transform as

H(mAu, ndv) =
M=1N-1

AxAy Y'Y h(kAx, 14y) cas

k=0 =0

h(kAx l4y) =
M-1N-1

Y. Y H(mAu, ndv)cas

T"TY m=0 nl=0

27:mk cas 2l 27rnl 25)

27tmk cas 2L 27ml (26)
For convenience, the DHT pair of equations (25)
and (26) is presented using only the integers k, 1
and m, n as

h(k, I) <=> H(m, n) @7

Although the above described definitions are very
convenient for the computation of convolution and
correlation, they are not suitable for spectral
analysis because they have no simple physical
interpretation as an oblique wave. In order to study
the spectral properties of a function, we could use
kind of kernel, cas[2rn(mk/M+nl/N)],
instead of cas2mmk /Mcas2nnl/N used in equations
(25) and (26) to define the two dimensional
discrete Hartley transform as (Bracewell et al,
1986)

another

H(m, n) = 'flf‘ih(k, I)cas 2"“‘“+ﬂ) 28)

M-IN-1

h(k, ) =" Y H(m, n)cas(

k=0 =0

271:mk 27m1

=) (29)

However, the kemel cas[2n(mk/M+nl/N)], unlike
exp.[j 2r(mk/M+nl/N)] or that in equations (25)
and (26), is not separable into product of factors.
So, this kind of transform can not be performed by
direct analogy to the two dimensional FFT. To get
H(m, n), we should first compute H(m, n) via

equation (25), and then evaluate H(m, n) according
to the expression 2H(m, n)=H(m, n)}+H(-m, n)+H
(m,-n)-H(-m,-n).

Because our interest is usually how to compute
the convolution efficiently, throughout this paper,
we will discuss and use the Hartley transform pair
defined by equation (25) and (26). To perform the
two dimensional discrete Hartley transform, we
transferred a one dimensional basic radix-2 sub-
routine (Bold, 1985) into Fortran and made some
modifications.

3.3.3 The Properties of the 2-D Hartely Transform

The following properties of two dimensional
discrete Hartley transform can be derived directly
from definitions and, therefore, are listed below
without proof. For simplicity, we will write
equations (25) and (26) as

M=-1N-1

H(m, n) = Ax4y 3" ¥ h(k, I)cas mk cas nl (30)
k=0 =0
M-1N-1
h(k, )= TxTy é;n(m n) cas mk cas nl 3y
(a) linearity

ah(k, )+b g(k, I) <=> a H(m, n)+b G(m, n) (32)
(b) spacing shifting

h(k-A4, 1-p) <=>
H(m, n)cosm Acosn jt— H (m, —n Ycosm Asinn y1—
H(-m, n)sinmAcosnyt + H(—m, —n)sinmAsinny (33)

If A=M/2 and u=N/2, then
h(k— 2M - %) <=> (~1)™ H(m, n) (34)

(c) even function

he(k, 1) <=>
Hm, n) = AxAybf‘: Ni he(k, )cosmkcosnl  (35)
=0 10

(d) odd function

ho(k, 1) <=>
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Ho(m, n) = AxAyLE Nf‘ ho(k, I) cos mkcosnl (36)

k=0 =0

(e) convolution

hek, D*gk, ) <=>
G(m’ n)Hl (m’ n)+g(—m, n) Hz(nla l’l) +
g(-m, n)Hy(m, n)+g(m, —n)H,(m, n) G7)

where
Hy(m, n) =
% [H(m, n) + H(m, )+ H(m, -n)+H(Cm, n)]  (38)
Hy(m, n) =
% [H(m, n)+H(-m, n)+H(m, -n)+H(-m, n)]  (39)
Hy(m, n) =

% [H(m, n) + H(-m, —n)+H(m, -n)+H(-m, n)] (40)

H(m, n)=

% [H(m, 1)+ H(—m, n)+H(m, n)+H(-m,n)]  (41)
If one of the convolved function, say h(k, 1), is
even, the convolution theorem simplifies to

h(k, I)*g(k, I) <=> H(m, n) G(m, n) 42)
(P cross correlation

hk, D ® g(k, ) <=>
G(m, n)H,(m, n) + G(-m, —n)H,(m, n)

—~G(-m, n)Hy(m, n)-G(m, )H,@m,n)  (43)

if g(k, 1) is even function, then

he(k, 1) g(k, 1) <=> G(m, n) H(m, n) 44)
(g) DC value
T, T M-1N-1
H(O,0)= 223" 3 h(k, ) = T<Tyusybh 45)
MN k=0 =0
1 M-1N-1 _ 46
h(O’ 0) = T_XT_S"E é ;H(ﬂl, m) - (m’ n) ( )

(h) the quadratic content theorem

M-1N-1
1

TxTy M-1N-1 _ )
o 2 bl P = e 35 Hm mF - (47)

The proof of (¢) and (f) can be easily obtained
using the following properties of the cas-function:

cas(x +y) = casx casy +cas(—x)sin y (48)
cas(x +Yy) = casx casy +cas(—X)sin y (49)

3.3.4 Computation of the Residual Geoid Undulation
via the FHT

Using rectangular coordinates and in planar
approximation, the residual geoid undulations Ny
computed from Ag's in an area E can be expressed
by the following two-dimensional convolution

integral:
N(xp, ¥p) =
1 1
5= 1]48xy) dxdy (50)
2y i N(xp—x)*+(yp—y)

If the given discrete gravity anomalies Ag are

gridded point values, the residual geoid

undulations N, at node (m, n) can be computed by

N(m, n)= _231—7 Ag(m, n) * 1y (m, n) 1)

1(m, n) = AxAy(x¥m, n)+yXm, n)) ™2 52)

Latitude(degree)

12400 125,00 126,00 127.00 126.00 126.00 130.00 131.00
Longitude(degree)
Fig. 4. Topography extracted from GTOPO40
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Making use of the discrete Hartley transform, equation

(35) can be efficiently evaluated by
=1
N= 2WH {AGLy} (53)

where AG and Ly are the discrete Hartley transforms
of Ag and Iy respectively

AG =H {Ag} (54)
Ly=H{ly} (55)

If gravity anomalies are mean values, the kernel
function ly should be (Sideris and Li, 1992a and b).

In(m, n) =

(m+0.5)Ax
(m-0.5)4x

(n+0.5)Ay
(n~-0.5)Ay

xIn(y +Ve+y2) +y In(x+ N2 +y) (56)

The observed gravity data (2,572 points) used is
supplied by the National Geography Institute (NGI),
Prof. Choi, K. S. in Pusan University, and Bureau
Gravimetrique International (BGl) as shown in Fig.
5. Data were received in two basic forms: paper
and digital listings. The raw data obtained is filt-

Free-air Anomaly(mgal)

0.00 40000

80000 120000
Height(rm)
Fig. 5. The correlation between free-air gravity
anomaly and height in the southern part of

the Korean peninsula

160000 200000

ered to delete duplicate or obviously wrong data.
These digital data were reformatted and corrected
to the required processing parameters and datum
used in this study. Gravity anomalies in the ocean
area are based on a combination of Geosat, ERS-1
and Topex/Poseidon databases developed at BGL
Especially, regression interpolation was applied
to estimate gravity anomalies for the northern part
of the Korean peninsula. Regression analysis is
based on correlation between gravity anomalies
and height. The following linear function was used

Ag;=a+blogH+v &%)

Using GTOPO30 global digital elevation model
resulting from a collaborative effort led by the
staff at the US Geological Survey's EROS Data
Center, 5'X 5' regridded heights as shown in Fig. 4
were prepared for the northern area of the penin-
sula. Based on point free-air gravity anomalies and
heights in the southern part, coefficients a and b of
linear function are determined by least square
method and linear regression equation is given

41.004

LATITUDE

§ E 6 & 55 B 8

00 y r
R0 12006 12300 12000 12700 12300 12300 13600 19700 13300

LONGITUDE

Fig. 6. Free-air gravity anomaly map obtained by
regression in the northern area of the Korean
peninsula. Contour Interval: 20 mGal

_23_



Table 1. Statistics of gravity anomalies and geoid undulations

Geopotential Model MAX. MIN. MEAN RMS STD
OSU91A N(m) 3517 10.30 24.19 24.78 5.40
Ag(mGal) 85.72 -95.14 16.41 24.03 17.55

EGMY96 N(m) 33.68 8.18 23.68 24.28 538
Ag(mGal) 107.97 -110.24 18.61 28.04 2097

Free-air anomalies 246.93 -101.20 16.61 21.20 27.58
Residual anomalies 195.34 -57.19 4.45 17.32 19.71

Ag=9.67+0.084log H (58) vity anomalies were gridded in a grid span of 5'X

Fig. 5 shows correlation of free-air anomaly and
height, and gravity anomalies estimated in the
northern area of the peninsula are shown in Fig. 6.

Pre-processing for geoid computation was to
calculate the residual gravity anomalies. These
residual anomalies were obtained by simply
subtracting interpolated long wavelength -effect
from condensed gravity anomalies referred to a
gravity formula corresponding to GR80. Because
the use of local 5'X5' gravity data improves

results significantly (Yun, 1995), the residual gra-

w2 (IC WLl BT

AN,
‘o r (4.
A

5200
123.00 12400 12500 12400 127.00 12800 129.00 130.00 131.00 13200

LLONGITUDE{degree)
Fig. 7. Residual gravity anomalies from geopotential
model minus Faye gravity anomaly. Contour
Interval: 20 mGal

5' in the following area:32°<@<43°;123°<A<
132° by means of minimum curvature splines.

Fig. 7 shows the residual gravity anomalies.
Statistics of all available data are summarized in
Table 1. In order to compute the residual geoid
undulations, field transformation technique used
here is 2-D Fast Hartley Transform technique.
The Hartley transform is superior to the Fourier
transform with respect to requirements in both
computer time and computer memory. The
Hartley transformation is symmetric according to
transformation formula and real signal is also real.

These properties have led to the use of the

' 29}
) ;

o %
I\

3200 L~ )
123.00 124.00 12800 12800 127.00 12800 128.00 130,00 12
LONGITUDE

Fig. 8. Residual geoid undulations obtained from 2-D
FHT with at least 100% zero-padding. Contour
Interval: 10 cm

00 132.00
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Hartley transform for time-efficient Fourier

analysis of real signals. For a data length N being
an integer power of 2, ie, N=2°, the FHT
algorithm can be developed in just the same way
as the FFT algorithm. As the FHT uses only real

i v i
i

40.00
v

LOBGITUDE
Fig. 9. The resulting geoid map based on EGM96
geopotential model by means of 2-D FHT with
100% zero-padding techmique. Contour
Interval: 20 cm

..

4.0

4.3
3
°
3
-
-
-

e

e

-
n» L A 2 3 nae
1.6 120.58 .. i g 1.0

Lang ttude
Fig. 10. Differences between the gravimetrc geoid
solution and GPS/Leveling geoid. Contour
Interval: 10 cm

operations, it is about twice as fast as the FFT (Li,
1992).

To eliminate the effect of circular convolution
on the computation, zero-padding was applied to
each row and column of two data arrays. Fig. 8
shows the residual geoid undulation computed by
FHT. The results shows larger value than that was
given by Yun (1995) and Lee et al. (1996) It is
clearly shown large differences is given by filling
of empty cells in the northern area of peninsula.

Final geoid undulation was obtained by adding
two effects. Fig. 9 shows final geoid surface
referred to the GRS80 ellipsoid. The resulting
geoid shows that difference is about 14 m from
land. For
evaluating of the resulting quasi-geoid and for the

north-west to south-east side on
determination of the geometric geoid, 49 GPS/
Leveling stations were used. The differences

between two solutions, gravimetric geoid
undulations are estimated to have an absolute
accuracy close to 0.33 cm in the southern area of
the peninsula. Although such evaluation in the
northern area is not carried out, we consider that
accuracy of result obtained from estimated gravity

anomalies is improved.
4. Conclusions

In this study a gravimetric geoid solution was
determined in and around the Korean peninsula
using all available gravity. This involved EGM96
to degree and order 360 as reference geopotential
model, and 2 dimensional Fast Hartley Transform.
The Fast Hartley Transform is superior to the Fast
Fourier Transform for the computations of real
discrete convolutions, because in adding to having
all advantages of FHT can save half of computer
core compared with FFT.

To evaluate the resulting geoid, differences
between gravimetric solution and GPS/Leveling
were evaluated. Standard deviation versus

maximum values of contribution from condensed
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gravity anomalies is 1.06 vs. 1.55 meters. The
geoid shows that difference from the north-west to
the east south is about 14 meters across the
Korean peninsula. From the comparison of
gravimetric geoid and differences show up in hilly
mountainous areas, suggesting that orthometric
heights obtained from spirit leveling have a large 8
efror in mountainous areas.
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