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1. Introduction

The problem of constructing reliable basic components by appropriate redundancy
relatively used by Von Neumann in 1956, He showed how to combine a number of
unreliable "Sheffer Stroke” organs to obtain an element which acts like a Sheffer stroke
organ of higher reliability. Moore and Shannon, inspired by the Von Neumann's paper,
carry out an elegant analysis for relay circuits in which they show that by the proper
incorporation of redundancy, arbitrarily reliable circuits can be constructed from arbitrarily
unreliable relays. Birbaum, Esary and Saunders generalize the concepts and extend some of
the results of Moore and Shannon to the large natural class of structures having the
property that replacing failed components by working components cannot cause a working
structure to fail called coherent structures. The reliability literature of the past 10 years
contains many papers with reliability calculation of coherent structure.

This paper extends [9] and discussed the some algorithms for reliability calculation.
Problems related to the coherent structure of the system are based on [6]. The path set
and cut set method for determining system reliability [1] is used. In section 2,' we faintly
survey a inversion algorithm by Heidtmann to the case of inverting paths and cuts of
2-state systems. In section 3 and 4, we developed inclusion-exclusion algorithm and pivotal
decomposition algorithm by use of inclusion-exclusion formula and decomposition rule.
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Notation

N set of integers from 1 to n

1 subset of N

2N power set of N

MA} number of element of A

A inverse of A

A’ star function of A

x; boolean variable of i-th component

% complement boolean variable of i-th component

2. Inversion Algorithm

K. D. Heidtmann suggested an inversion algorithm in his paper [3]. Now we will try to
describe his algorithm in simpler terms. Each component of a system of = component 1s
uniquely represented by its index 7 € N,' and any assembly of components by a subset [
of N. So any path or cut is a subset of N, and set of all paths, or the set of all cuts, is a
subset of the power set 2% The concept of inverse combines two complement to invert
paths and cuts as subsets A and A’ of 2% that is, if A is set of paths, then A’ is set
of cuts; and vice versa.

Let AC2”, ICN. From the complement T of every I for I€A. Eliminate from 2% all
such I The result is A’, the inverse of A. More formally, let Ac2V, A2V, IcN.
Then A’ is the inverse of A if and only if for every possible I, either I€A or I=A’.
The inverse property is reciprocal: (A’)' = A. The number of elements of A, plus the
number of elements in A is 2"; n{A}+n{A'}=2". There exists one and only one
inverse of A.

Let AcC2” ICN. From the complement I of every for IeA. A" is the set of all those
7 A and(A’)" are a partition of 2% A'=(A“)=(A°)". These inverse and star
relationships were derived and proved in Lee(1996)[8].

In applying the inverse concept by hand calculation, many sets must be looked at
because 2% contains 2" elements. Thus it is helpful to verify the correctness of a
computed A’ by the following test which is based on the facts that A and (A")" form a
partition of 2", and #{2"}=2".

Test : Let A’ be the inverse of A, AC2Y, Then A and A’ satisfy
n{ A} +n{A'}=2"

For automated calculation, the inversion algorithm can be used. After execution, A’

contains all cuts if A contains all paths, and vice versa.
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Inversion Algorithm

Input : A, N

step 1. Compute A*. The I are the elements of 2N

step 2. Set T— @ and A <« O,

step . If & A* then A" — A U {1}

step 4. If I # N then replace I by its successor and go to 3.
step 5. Stop( A" is inverse of A ).

The test yields n{ A}+ n{ A’} = 3+ 5 = 2%

Example 1. The bridge structure is shown in the following diagram

Fig.l 5-component bridge system

There are five components; n=5, N={(1, 2, 3, 4, 5}

V={o. (1, - - -, 6L{1,2), - - -, {4,51,(1,2,3), - - -.{3.4,5).{1,2,3,4}, - - -,
{2,3,4,5}.{1,2,3,4,5}}
n{2M =2°.
This system has 16 paths which conclude 4 minimal path sets.
A={1,L, - - - Li}={{1,4},{2,5}, - - - ,{1,2,3,4,5}}.
T ={T4}=1{2,3,5}, ,={2,5}={1,3,4}, - - -, T,=1{1,2,3.4,5) = 2.
Thus A"={{2,3,5},{1,3,4}, - - -, 2}

By remove the elements of A* from 2.
A ={{1,2,3},{4,5},---,{1,2,3,4,5}}.

The test yields : #{A}+#{A’}=16+16=2".
According to above example, inversion algorithm is useful to find inverting paths and cuts
of 2-states systems, but it depend upon set theory. Therefore, we need another algorithm
in order to calculate system reliability easily.
Now, we present a algebraic technique computing system reliability for above system.
The minimal paths are {14}, {1.35}, {2,5}, {2,3,4}.

Let x; is Boolean variable indicating whether component i is good (x;=1) or failed
( x;,=0), then the path polynomial is

21X+ X1%3%5 + XoXg + Xox3xy. (D
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With regard to the usual Boolean operations of addition and multiplication, any
assignment of 0-1 values to the x;s that makes the path polynomial equal to 1
corresponds to a good state of the system. An inverse polynomial to the path can be
obtained by complimenting the given polynomial and wusing DeMorgan's laws.
Complimentation of (1) results in:

Gy + x)(xy + x5+ x5) (g + x5)(20 + 25+ %) 2

If we expanded above formula (2) using the distributive law and deleted non-minimal
elements using absorption law, the result is the cut set polynomial which provides an
enumeration of all minimal cut sets:

Xy Xo+ x| X3 x5+ X2 x3 x4+ x4 x5. (3)

Any assignment of 0-1 values to the =x,'s that makes the cut set polynomial equal to 1

corresponds to system failure; ie, no path of good arcs exists in bridge system.
This algorithm is very simple; is equally-efficient for simple and complex and system.

3. Inclusion-Exclusion Algorithm

The inclusion-exclusion rule came from additive law of probability. So the
inclusion-exclusion method provides successive upper and lower bounds on system
reliability which converge to the exact system reliability. In system reliability calculations
by the inclusion-exclusion method, large numbers of pairs of identical terms with opposite
signs cancel. For any system with » minimal path sets the number of terms generated in

step ¢ of the method is (?) so that the Poincaré formula consist of Z (?):2”—1

terms.

Two of the terms cancel if a union of ¢ minimal path sets contains exactly the same
components as a union of ; minimal path sets (1<i, j<n. |i—il =1 ) Therefore the
reliability analysis of all systems having pairwise disjoint minimal path sets, ie. which
have redundant component, is affected by this cancelling terms. For nearly all large
complex systems the number of cancelling terms is enormous, so that avoiding these terms
affords an important computational advantage.

Reliability analysis by the original method of inclusion-exclusion assumes the knowledge
of all minimal path or cut sets[1].

Let E(E, be the event that i-th component x; is functioning (failed) with probability
p,(1—p,).

Let A,(7A,) be the event that all components in r-th minimal path set P, is functioning
(failed).
ie.
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where K, is r-th minimal cut set.
Then

P(A)=P (NE)  PA)=P(NE) “4)
x,CP, "’ x, CK

r

System success corresponds to event Uy., A, if the system has » minimal path sets.

The the system reliability function

M@=H£A] 5)

Let
Sie= ZPALNALN--NAi]

1<i iy <n

by the inclusion-exclusion principall2]

K(p) = =D, )
and
k(p) <8,
r(p)= 5,5, (7)
h(p) <8, —S,+S;
and so on.

Now we define the approximation to system reliability function #(p) of step m by

K7 (= B(-DHS, ®
For m > 1

B7(p) = R V() +(=D"7'S,, (9)

R () = W(p) 10)

Although it is not true in general that the upper bounds decrease and the lower bounds

increase, in practice it may be necessary to calculate only a few S,s to obtain a close

approximation.

Of course similar formulas for computing system unreliability %) in terms of minimal cut

sets and component unreliabilities 1-p, can be given. Now we state the algorithm in

detail.

Inclusion- Exclusion Algorithm

Input © =, py, b2, ***, Du, Ny or e

Output : A(p)

step 1. set 7 =1

step 2. while /< N, do step 3~5

step 3. set S; = lsMZ(ns" P, P, ( compute S;)

Wp) = 2(-D7' S,
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step 4. if 1S,—S,_4 < ¢
output A(p)
stop
step 5. set 7 = i+1
Si= Sin1
step 6. output (method failed after N, iterations, Ny or A(p) )

4. Pivotal decomposition algorithm

This section, gives the algorithm for pivotal decomposition rule. The following identity
holds for any structure function ¢ of order »:

#(x) = x; - (1,2) + (1—x;) - ¢(0;,%) (11)
We immediately obtain the corresponding pivotal decomposition of the reliability function.
W)= E[¢(X)]
=i h(1up) + (=) - h(04p) i = 1,,n (12)

Now we proposed following algorithm.

Algorithm for series system

Input : n, py, Dy '+, P

Output : ()

step 1. 7 =1

step 2. while i< % do step 3~4

step 3. set #0;,p) = 0
(1 p) = piv1- (L, ) + (L—=2i41) - K041, )
Wp) = pi- k(1;p) + (1=p) - k0;, D) (compute h(p))

stepd. i =i+ 1

step 5. output A(p)

Algorithm for parallel system
Input : =, py Py =, Da
Output : k()
stepl. 7 =1
step 2. while i< % do step 3~4
step 3. set A(1;,p) =1
20,0 = pinik(liv, ) + (3= pis V00144, P)
Wp) = pi- W1, p) + (1—=p) - K0, 0) (compute h(p))
stepd =7 + 1
step 5. output A(p)
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5. Numerical Examples

Now we present several examples. we applied the inclusion-exclusion method in actual
practice which concerned airplane operation system (Lee 1991, 1993)[5],[6]. Suppose that an
airplane engine will operate, when in flight, with probability s, independently from engine
to engine; Suppose that the airplane will make a successful flight if at least 50% of its
engines remain operative.

Example 2. (1-out-of-2:G system) We consider 2-engine plane. From (Lee 1993-1)(6], it
has two minimal path sets

P={1}, P={2}
Thus the first bound on the reliability 2"(p) is

B = §, = 3 AAD

=p+8
And the second bound is
K2 = hV(p) - S,
= 1) — AN Ay
=Pt Py = b
Hence by (10), system reliability
h(p) = 1'2(p)
The 1-out-of-2 : G system is also a 2-out of-2 : F system with only one minimal cut set
K, =(1,2}
Hence unreliability
H(p) = P(AY)
= (1= p N1 —p,)
Next we consider 4-engine plane.

Example 3.(2-out-of-4: G system) From(5] it has six minimal path sets;
Pi={1, 2}, P,={(1, 3}, Py={(1, 4}
P,=1{2, 3}, Ps=1(2 4}, P;=1(3, 4)

Thus the first bound on the reliability is

() = 5= S PAD

= Dby + Dbyt byt brdst by + Dity
Since
P(AINAY) = p b2 03 . PLANAG = Dy b B3 B4
Hence the second bound is
RP(p) = k() = S,

= V(p) - LA NAT)
1<i<i, 56

=HE — 3 paby +hydr by F 0y by by + by b3 by + Py By by DY)
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Similarly
B9 = hP(p) + S,
= h'2(p)— DP(Ai\ N AiNAsy)
14, 4,<4;<6
=hO(p) + pypa by 5y by by F b3 by o bs by + 16Dy by B3 D
The 4 terms of #9(p being products of 3 factors cancel 4 terms of 2®(p), and the 3

terms pipaps0, of K2(p) cancel 3 of the 16 terms of 2%(p).
This results in
RO = () — 158, b2 b3 14
RO = () + 621 b2 13 B4
R(p) = B(p) = k() — p1 92 b3 1a
with 46 cancelling terms.
The 2-out-of-4 : G system is also a 3-out-of-4 : F system with four minimal cut sets
K ={1.2,3 K,=1{1,2,4} Ky=1{1,3,4) K,=1{2,3,4}

W) = 3\ P(AD

=1=p)A=p)(1—p3) + (1= p) (A=) (1—5)
+ (1= A=) (1= p) + (1= p2) (1= p3) (1 = py)
BP(p) = k()= 6(1—p)(1— ) (1= p3) (1= 1)
B = hP(p) + 41 =) (1= 1) (1= p) (A — 1)
W) = OB = B0 — 1= p) A=) (1= ) (1= 5,)

There are 8 cancelling terms instead of 46, and much less computation because

2% —2' =48 fewer terms.

Example 4. We consider 3-component series system and 3-component parallel system with
success probabilities p,=0.6, p,=0.7, p3=0.8 in Fig.2 and Fig.3. By pivotal
decomposttion algorithm, series system reliability is
Wpy=p - b1, )+ (1 —p) - KOy, D)

= pi{ph(1z, D) + (1 = p) (05, D)} + (1 — p) (0, , D)

= pi{tes+(1=0) - O} +(1—p1) -0

= Di1babs

= (.336

— {5

Fig.2 3-component series system

parallel system reliability is
w(p)=p, - W1, D)+ (1 —p) - k(0y, D)
= pi-1 + (A= H{pk(l3, ) +(1—p2) K02, 1)}
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fl

1+ (1= P+ (1= p2)p3}
0.6+0.4(0.7+0.3%0.8)
= (.976

Fig.3 3-component parallel system

Example 5.(Generalized Example 4) By pivotal decomposition algorithm, we obtain
following reliability function.

2-component series system ;
h(p) =p1h(1y, 0) + (1 — 2RO, 1)
= pivat(1—=p) -0
= Dby
3-component series system
h(p)=p, - R(1y,0) + (1~ 1) - B0, p)
= 2 {01, 0) + (1= p )0, 0} + (1 —p)h(0y,0)
= pi{paps+(1=p2) -0} +(1=p1) - 0
= D1D:b3
4-component series system,
h(p)=p, - h(1,, p)+(1—=p)) - k0, p)
= pi{pa(15,0) + (1= p)R02.0)} + (1—p)k(0y, )
= plbaAtsh (130 + (A=) k(05,0 + (1 —pIR(02, 1] + (1—p)k(04, )
pilpa{pspy + (1~p3) -0} + (1—p9) 0] + (1—p)-0
= D1DaD3bsy

Il

2-component parallel system ;
Wp)=p,- h(1,,p)+ (1 —p) - k0, 1)
= p 1+ Q=p U150 + (1 =p2)R(05, P}
= p T QA=pXHp: + (A—py) -0}
= pn + A=p)p

3-component parallel system ;
h(pYy=p, - (1, p)+(1—p)) - k0, p)
= po 1+ (1=p X1y ) + (1 =)0, 2}

161
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= p+ (A =p) o2+ (1= 030(13, p) + (1 —p3)k(03, p)}]
pr+ Q=plpe + (L= )93 + (1—p3) - 0}]
= g+ A= o+ (1=p) - p3}
4-component parallel system ;
Kp)=py - k(1,,0)+(1—p)) - k0, 1)
= py- 1+ (1=p){5:k(12. ) + (1 —p)h(0;, 1)}
= p + (A=plp2+ (1= p) p30(15, p) + (1 —p3)R(03, D)}]
= p +Q=plpe + A=p X3 + (1—103) - {ph(14.0) + (1 — p)h(04, P)}}]

For general non series—parallel system (have unequal probabilities of success),
the only known practical method of exact analysis are the path and cut-set

I

method.

Example 6. (8-component complex system) Consider complex system in fig.4.

Fig.4 8-component complex system

There are 8 path set;

{1,4,7}, {2,5,8}, {1,3,5,8}, {1,4,6,8}, {2,3.4,7}, {2,5,6,7}, {1,3,5,6,7}, {2,3.4,6,8)

System reliability is
W) = toapr + (1= p1oadr) [Dadsps + (1 — papste) Dibapsps + (1 — by psdspe X 10Dty
+ (1= ;ipapets X Dapapapr) + (1 — pabstapr) - { pabspetr + (1 — papspedr)
{D1Dapspedr + (1~ p1D3dspedr) « (Dopabadeds) 1]

Now, we consider following example in order to compare two algorithms in computational
complexity.
Example 7. In example 1, there are 4 minimal path sets {1,4}, {1,3,5}, {2,5}, {2,3,4).

By inclusion-exclusion algorithm, reliability function is
h(D) = p1py+ p1b3ps + Dobs + Dadsds — (D) Padads + Drbadabs + DrDabdsDy + DrDabsDs + Dibabsdabs + Dobspads)

+ (PrDopabads + Drpadabsds + DibaDabads + DrDadsbaDs) — DrbeDababs
= D1 Da+ DiDaps + Dabs + Dabsds — (D1 D3Dads + D1D2Dals + PrDabsdy + DabsDabs) + Abi1Dabsdabs

By pivotal decomposition algorithm, reliability function is

R p) =p10a+ (1 — D1 0L D1 b3bs + (1 — pr0aps) paps + (1 — paps)papspa}].
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Thus pivotal decomposition algorithm is more useful for reliability calculation in 5-bridge
structure.

4, Conclusion

In this paper, We suggest some algorithms for system reliability calculation of coherent
structure. Inversion algorithm is most useful to find inverting paths and cuts of 2-states
systems, but it is not more useful than inclusion-exclusion or decompdsition algorithm in
reliability calculation of coherent structure.

Following tables represent reliability calculation of n-component structure used two
algorithms.

table 1. series structure

inclusion - exclusion pivotal decomposition
n=2 | pipz pipz+{1-p1)0
n=3 | pip2p3 pi{peps+(1-p2)0}+(1-p1)0
n=4 | pipzp3p4 pilp2{pspa+ (1-p3)0+(1-p2)0}]+(1-p1)0

table 2. parallel structure

inclusion - exclusion pivotal decomposition
n=2 | pitpz-Dip2 pi+(1-py)p2
n=3 | pr+p2*ps—{P1pz+PiPs+P2ps)+Pip2Ds pr+(1-p1){p2+(1-p2)ps}

D1+p2+p3+pa~(P1D2*+ P1P3+P1D4*P2D3
n=4 | +p2pa+papa)+(P1D2D3+ D124+ PIP3D4 pi+(1-ppe+(1-p2){ps+(1-p3)pal]
+P2D3pa) ~P1P2Pap4

By above tables and example 7, we show that in case of series structure, the
inclusion-exclusion algorithm is proper in computational complexity reduction, but pivotal
decomposition algorithm is proper in computational complexity reduction in case of parallel
structure. We expect that our method, applied in this paper, is further extended to the case
when components of the system are given multi-states. Further research, which is outside
the scope of this paper, must be undertaken to compare the computation speeds between
the two algorithms.
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