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1. Introduction

The last few years have witnessed much criticism about the failure of reliability theory
to have a tangible impact on the problems of modern science and technology. The lack of
meaningful assessments of the integrity of composite materials and the survivability of
structural elements have been cited as examples. Such criticism is justified because much
of the literature in reliability tends to focus on old themes such as a characterization of
classes of survival distributions or inference for parameters of failure models. Parametric
families of distributions, such as the exponential and the Weibull, have been used as failure
models for almost 30 years. Besides tradition and convenience, a typical reason for
selecting these models has been a subjective assessment about the aging characteristics of
an item and/or the model’s goodness-of-fit to failure data. Often the failure data used is
obtained from life-testing experiments conducted under controlled laboratory environments
that are static. To many engineers and scientists, this black-box approach to model
selection is unsatisfactory. A more appealing approach would be to choose a model based
on the physics of failure and the characteristics of the operating environment{11].

It is well-known in the industrial community that the failure rates of newly
manufactured items vary with time because of, for instance, the engineering design,
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manufacturing processes, maintenance & quality inspection procedures, and environmental &
operational conditions. Such failure rates invariably exhibit random changes in level and
slope and at times exhibit periodic patterns as well depending upon whether or not the
maintenance is periodic. Therefore it would not be appropriate to model such stochastic
processes using the common failure-distribution approach, especially since the fail to
consider the periodicities[9].

It was found during that if the failure times of a system follow either Rayleigh, Weibull
or exponential distributions and if the reliability-decay process of the system is represented
by an AR(1) model with a specific time-dependent coefficient in each case, then the
conditional mean of the AR(1) process, given that the initial value is equal to 1, is the
same as the maximum likelihood estimate of the reliability function obtained by the
classical method. Advantages of such a representation were discussed. Properties of
time-dependent ARMAC(1,1) processes were discussed and asymptotic results were
obtained[8].

Singh [9] developed an unconventional but powerful approach to analyzing the observed
and/or estimated failure rates of complex systems that operate in series and/or in parallel
under varying operational & environmental conditions. Consequently such failure rates can
be construed as time series which are complex in the sense that they are aggregates
and/or products of two or more time series, Hence special time-series techniques are
required for their analysis. Some of the results recently developed apply to the analysis of
such time series. These results can also be used for the analysis of the reliability decay
{growth) processes, actual failure times, times between failures, and interactions between
failure times and maintenance times of complex systems.

The primary aim of the present study is to model stochastic failure rates of
parts/systems that operate under varying operational & environmental conditions.
Illustrative examples are discussed using simulated data. And secondary aim of this study
is to model stochastic bathtub failure rates of burn-in. '

Figure 1 shows the distribution of the number of failures. The plot of the number of
failures in Figure 1 clearly shows that the failure times have a) a conspicuous downward
trend, and b)random fluctuations. This fact is also reflected from the graph of the empirical
failure rates in Figure 2 which, instead of being a constant, seems to form a stationary
time series. Hence the analysis of such failure rates are better modeled by a time series
approach rather than the distribution approach.

2. Stochastic Process Approach to Failure Models

Over the last few years, somne literature devoted to the evolution of a relatively new
class of failure models, both univariate and multivariate, for applications in reliability and
biometry has begun to appear. A distinguishing feature of these new models is the
fundamental theme that drives their development: they have been derived by considering
stochastic processes that are presumed to describe the failure-generating mechanisms.
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Describing failure-generating mechanisms by stochastic processes is particularly germane
when the environment under which the items operate is dynamic, that is, when the induced
stresses(or covariates) vary over time. This is because dynamic environments induce
internal stresses in an item that change the rates and the modes by which the item
degrades to failure. _

Because dynamic environments induce changes in the physics of failure, a
stochastic-process approach to failure modelling provides flexibility with respect to
describing the failure-generating mechanisms. This flexibility results in a better description
of the failure data and an improved assessment of item survivability. This is perhaps the
main reason why reliability engineers should be interested in the approach of this paper.
Futhermore, the approach also raises the general level of the state of the art in reliability
theory and survival analysis, especially in the ability to describe the survivability of
multistate items. A disadvantage of the stochastic-process—-based approach to failure
modelling is that the resulting expressions for the survival function take unmanageable
forms and can only be expressed via their Laplace transforms. However, with the rapid
advances in the use of computer and simulation-based technologies in the statistical
sciences, together with a widespread use of numerical techniques such as saddle-point
approximations, the disadvantage of not having closed-form expressions will gradually
disappear. Consequently, future research in reliability will also have to focus on
computation and computability.

In developing an approach to failure modelling based on a stochastic process, it appears
that four strategies have evolved; the two predominant ones are emphasized here. With the
first strategy, the item state(or, equivalently, its wear) has been described by a diffusion
process: typically a Wiener process, a gamma process or a deterministic diffusion. It can
be shown that deterministic diffusions give rise to some of the well-known failure models
that are in use today. Diffusion processes are stochastic processes with continuous sample
paths. With the second strategy, it is the failure rate(also known as the hazard rate) of the
item that is described by a stochastic process: typically a gamma process; a shot-noise
process; functionals of a Wiener process; or, in general, a Lévy process. Lévy processes
have stationary independent increments, and their marginal distributions are infinitely
divisible. A more recent trend has been the development of failure models based on a
consideration of two processes, one for the item state or wear and the other for a
covariate that drives it. Covariate processes that drive the wear are referred to in the
engineering literature as excitation processes. A study of models derived from excitation
processes may signal a new philosophy of life-testing experiments wherein one must also
monitor the conditions of the test. The third strategy for developing failure models focuses
on describing the damage-causing environment by a stochastic process, typically a
shock-inflicting Poisson process; the resulting failure models are known as shock models.
The fourth and final strategy, and one for which there has been little development, is that
in which a response variable that is strongly correlated with the lifelength, such as
temperature, is described by a stochastic process, typically a stationary, continuous-time
Gaussian process.

The flow chart depicted in Figure 3 shows stochastic process approach to failure
models{11].
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Figure 3. Stochastic Process Approach to Failure Models

3. Time Series Modeling

3.1 Stationary Time Series Models
3.1.1 Autoregressive Processes

It is given by
Z=¢12r—1+"‘+¢p2t—p+ a;

or
¢p(B)Zt=a1y
where ¢,(B)=(1~¢ B~ —¢,B").
3.1.2 Moving Average Processes
It is given by
Zi=a,— 0@y~ — 0,a,-,
or
Z2,=0,Ba,
where

6B)=(1—-6,B —-—6,B%.
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3.1.3 The General Mixed ARMA(p,q) Processes
In model building, it may be necessary to include both autoregressive and moving
average terms in a model. This leads to the following useful mixed autoregressive moving
average (ARMA) process:
¢ B)Z,= 6,B)a,

where

$(B)=1—$ B~ - —¢,B’,
and

6,B)=1-6,B—-—8,B°.

3.2 Autoregressive Integrated Moving Average(ARIMA) Models

We have
¢ B)(1—B)?Z,= 6+ 6,(B)a,
where the stationary AR operator ¢,B)=(1—¢ B—-—¢,B") and the invertible MA
operator 6,(B)=(1—6,B— - — #,B%) share no common factors.

3.3 Seasonal ARIMA Models
We get the following well-known Box-Jenkins multiplicative seasonal ARIMA model:

0,(B)¢,(B)(1— B) 1 - B)%,= 6,(B) 0 B)a,

where

7 ={Z,—-;z, if d=D=0,
1\ Z, otherwise.

For convenience, we often call ¢,B) and 8,B) the regular autoregressive and moving

average factors(polynomials) and @, (B®) and ©(B°) the seasonal autoregressive and
moving average factors(or polynomials), respectively. The model is often denoted as
ARIMA (p, d,9) = (P, D,Q),, where the subindex s refers to the seasonal period.

T+ Intervention and Outlier Models

%=1 Intervention Model
For multiple intervention inputs, we have the following general class of models;

b,
_ w,{(B)B” 4(B)
Z= 27 5m bt um
where I,,j=1,2,...,k are intervention variables.

3.4.2 Outlier Models
For a given stationary or properly deduced stationary process, let Z, be the observed

series and X, be the outlier-free series. Assume that {X} follows a general ARMA(p,q)

model
H(B)X,= é#B)a,
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where ¢(B)=(1—¢$B— —¢,B) and 6B)=(—-6,B——6,B° are stationary and
invertible operators sharing no common factors, and {e} is a sequence of white noise,
identically and independently distributed as N(0, ¢2). An additive outlier (AO) is defined as

7 =[X,, =T
d X+ o, t=T

=X+ olf”

where

(nz{l, t=T,
! 0, =T,

is the indicator variable representing the presence or absence of an outlier at time T. An
innovational outlier (I0) model is defined as

z, = x+ZB o1

_ _6(B)
=~4(B) (a,+ oI'P).

Hence, an additive outlier affects only the level of the 7th observation, whereas an
innovational outlier affects all observations Zs,Zz4q, ", beyond time 7 through the
memory of the system described by 6(B)/#(B).

More generally, a time series might contain several, say 4, outliers of different types,
and we have the following general outlier model:

Z,= gowjuj(B)I,( Pix,

where XF%))—&,, v(B)=1 for an AQ and v{(B)=8(B)/#(B) for an IO at time =T,

3.5 Spectral Models
The given sequence of » numbers, {Z}, can be written as a linear combination of the

orthogonal trigonometric functions. That is,
1
2= go[ apcos@rkt/n) + bysin 2nkt/n)],  t=1,2,...,n.

Equation is called the Fourier series of the sequence Z,. The a, and &, are called Fourier

coefficients.

3.6 Transfer Function Models

We have the following entertained transfer function model:

B 9B
i RO
More generally, the output series may be influenced by multiple input series, and we have
the following multiple-input causal model:

Y= Iﬁ::ou,-(B)x,ﬁ- 7,
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or
_ w{B) ., 4(B)
Y= 275(B) Bt 4 @

where v/{B)= w{B)BY/8{B) is the transfer function for the sth input series x; are a, are

assumed to be independent of each of the input series xj,7=1,2,...,4

37 The Vector ARMA Processes
A useful class of parsimonious models is the vector autoregressive moving average
ARMA (p,q) process
0,(B)Z,=8,(Ba,

where :

0,B)= 0,— 0,B— 0,B°— - — 0 B
and

O b= 60y— 6,B— §,B*— - — 0,B°
are the autoregressive and moving average matrix polynomials of orders 7 and g,

respectively, and @, and @, are nonsingular mXm matrices.

3.8 State Space Models
For a linear time-invariant system, its state space representation is described by the
state equation
Yie1=AY+ GXyy

and the output equation
Z,=HY,
where Y, is a state vector of dimension % A is a kxk transition matrix, G is a kX=
input matrix, X, is an nX1 vector of the input to the system, Z, is an mXx1 vector of
the output, and H is an mXk output or observation matrix. If both the input X, and the
output Z, are stochastic processes, then the state space representation is given by
Y., =AT,+Ga,s,y

Z, = HY,+ b,
where a,., =Xy, — E(X,4, | X,, t<n) is the nx1 vector of one-step-ahead forecast error
of the input process X; and b, is an wmXx1 vector of disturbances assumed to be
independent of a,. The vector a,,, is also known as the innovation of the input X, at
time (#+DI[3,13].

3.9 Serially Correlated Disturbances
A linear regression model with an ARMA(p,q) disturbance term may be written as
vi=%, 8+ u, t=1,..., T,

= 14—+t Dpthy-pt @+t 00 Ai—gq (4],
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3.10 Upward or Downward Trend

A time series such as the failure rates can have an upward trend as anticipated for
many systems[9]. If so, it can be induced in model by incorporating a deterministic
polynomial of degree d by including a non-zero constant 6 in model

¢6,(B)V“Z,= 0+ 0,B) a,

4. Linear Combinations of Time Series

4.1 Contemporaneous Aggregation
If X, and Y, are two independent, zero-mean, stationary series, then in this section

statements of the following kind will be considered:
if X,~ARMA(p,m), Y,~ARMA(q,n)

and Z,=X,+Y,

then Z,~ARMA(x,3.
Such a statement will be denoted by
ARMA(p, m) + ARMA(q, n) = ARMA(x, y).

Lemma.
MA(m) + MA(n) = MA(y),
where
y< max(m, n).
Theorem.
ARMA(p, m) + ARMA(q, n) = ARMA(x, ),
where

x<p+q and y<max(p+n, g+ m).

It is interesting to consider a number of special cases of the basic theorem, concentrating
on those situations in which coincidental reductions of parameters fo not occur. In the
cases considered the interpretations given will assume that aggregates are of independent
components, an assumption almost certainly not true in practice, and that the observational
error is white noise and independent of the true process, an assumption of debatable reality
but on which little empirical work is available from which to form an opinion.

(i) AR(p)+ white noise = ARMA(p, p)
This corresponds to an AR(p) signal as true process plus a simple white noise
observational error series. v

(i) AR(p)+ AR(q) = ARMA(p+ g, max(p, ¢)) and in particular AR(1)+ AR(Q1)= ARMA(2,1)
This situation might correspond to a series which is aggregated from two independent
AR series. A further case of possible interest is : the sum of % AR(1) series is
ARMA(k, k—1).

(i) MA(p) + MA(q)= MA(max (p, ¢)) and in particular MA(p)+ white noise = MA(p).
Thus if a true process follows an MA model then the addition of a white noise
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observation error will not alter the class of model, although the parameter values will
change.

(iv) ARMA(p, m)+ white noise = ARMA(p, p) if p>m and ARMA(p, m) if p<{m.
Thus the addition of an observational error may alter the order of an ARMA model
but need not do so.

(v) AR(p)+ MA(n)= ARMA(p,p+ n).
Again, this is possibly relevant to the aggregation case, or to the observation error
case with noise not being white noise.

Three other situations that might occur in practice lead either exactly, or approximately,
to ARMA models. These are:
(i) A variable that obeys a simple model such as AR(l) if it were recorded at an
interval of K units of time but which is actually observed at an interval of M units.
The variable considered has to be an accumulated one, that is of the type called a
stock variable by economists.
(i1) If X, is an instantaneously recorded variable, called a flow variable by economists,

and suppose that it obeys the model

Xi—aX,;=¢e, lall
where b may be a non-integer multiple or fraction of the observation period, then it
is easily shown that this is equivalent to the AR(c) model

Zhi}(t—i_—— &y

where h;={sin(j—b)n/(;— bz and doubtless this model could well be approximated

by an ARMA model.
(im) If X, Y, are generated by the bivariate autoregressive scheme with feedback;

aBX,+b6BY,=¢, BXA+dBY,=n,
where &, 5, are uncorrelated white noise series and 5(0)= c(0) =0, then the model
obeved by X, alone is found by eliminating Y, in the equations to be

[a(B)d(B)— c«(B)6(B)1X,= d(B)¢,;+ & B) 7,
and so the ARMA(p,q) model occurs once more, and it is easily shown that
generally p>q [4,5]

4.2 Contemporaneous Product of Time Series
If X,& Y, are s-independent stationary AR(1l) processes, then their product,
Z,=X,Y, is an AR(1).
Similarly, if X, is an MA(1)[9).

If,
X, ~ ARMA(p;,q), i €[1,%] then,

,IJX,,, ~ ARMA(5,q),
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p< IIJ bi,

g<p+max;€ [/ k£l (q;—po.
In particular,
AR(p))AR(py) = ARMA(p, - p2, p1 - b2 — min(py, p2),
AR(PAR(p)= ARMA(H?, 12~ p),

ARMA(p,, q))MA(a,) = MA(q3).

4.3 Composite (X +IT) ARMA Models

The main result of this paper is stated in the following:

Proposition. Let X and Y be two zero-mean dependent Gaussian ARMA processes of
orders (p1,q,) and (p;.qy) respectively and let Z=X+ Y+ XY . Let there exist a
polynomial ¢(B) of degree p; with all zeroes lying outside the unit circle such that

(B 7xA R+ 7vx(B) + 7xAR yyx(RD}=0, k>g3, say
then Z is ARMA (p,q with p<p,+ps+ 03+ 1P, a<p+max(qg;—p;,i=1,2,3), where ps

and g3 are some numbers which can always be determined in a specific situation[10].

4.4 Temporal Aggregation of the ARIMA Process

Assume that the observed time series Z; is the m-period nonoverlapping aggregates of

Zr=_ 5
T ey

=(+B+...+B" Dz,

where 7 is the aggregate time unit, and m is fixed and is called the order of aggregation.

2, defined as

4.5 Systematic Sampling of the ARIMA Process _

We examine the relationship between the underlying process ;z, and the model based on
the sampled subseries y;, where yr=2z,7 and m is the systematic sampling interval{13}.

Let the r.v. in the model,

Z,=¢Z,_ |+ a,,
be failure-time observed at the end of each semester. A yearly series can be formulated
by recording the values corresponding to only one of the semesters. Define,
Yr=27, t=0,%1,%2,....

Since,
Zyr= ¢Zsr + apr= $(¢Zyr—2t az7—1) + aor
Yr=¢'Yr_ 1+ 87
Br=ayr+ dayr-1, T=0,=%1,%x2,... form an iid sequence with mean 0 and variance

(1 + ¢%). Thus model is an AR(1).
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5. Time Series Modeling of Failure Rates

This section is concerned with the modeling of stochastic failure rates(observed or
estimated failure rates). Given the stochastic failure times, the stochastic failure rates can
be estimated at equidistant points of time. Three interesting, important characterizations
are! let the stochastic failure rates form a nonseasonal and

i) stationary time series then the failure times are exponentially distributed.

1) nonstationary time series having exponentially increasing or decreasing trend, then

the failure times are Weibull distributed.

iil) nonstationary time series having hyperbolically increasing or decreasing trend, then

the failure times are Gamma distributed[9].

This section models the stochastic failure rates of a system with n items connected in
series, given the estimated failure rates of each item at equidistant points of time. The
failure times of each item fluctuate randomly and are generated by a stochastic process. In
a series system of s-independent items, the system failure-rate is the sum of the item
failure-rate.

One of the pleasant properties of the exponential life distribution is that it is preserved
under the formation of series system. Specifically, we show the following theorem.

Theorem. Let Y be the life length of a series system of n independent components. Let

Y, the life length of component i, have exponential distribution Gi( H=1—e ",

i=1,.,.,n. Then Y has exponential distribution G,(=1—e ", where A-—*ﬁ/\, (1,71

For simplicity let a series system have 2 s-independent subsystems, s,&s;. The
estimated failure rate of s, follows on ARMA (p;,q;) process. The system failure-rate is

an ARMA (p, ¢) process.
These cases may be enumerated as follows[5]:

ARMA(p), a)) + ARMA(py, a) = ARMAGW,0),  p<p1+ 92, a5 D775 (0= 9+ 4)

AR(p)+ white noise = ARMA(p, p)
AR(p\) + AR(py) = ARMA( D, + py max (p,, p2)]
MA(q)) + MA(q,) = ARMAID, max (gy, ¢,)]
ARMA(p, ¢) + white noise = ARMA[p, max(p, ¢)]
AR(p) + MA(q) = ARMA(p.p+ q)
Table.l shows various numerical examples of time series modeling and analysis for
failure rates of systems that operate in series.
The analysis performed by PROC ARIMA is divided into three stages, corresponding to
the stages. The IDENTIFY, ESTIMATE, and FORECAST statements perform these
stages[6].



Table 1(a). Numerical Examples of Stochastic Failure Rates
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Model| A1Process! | 2, Process: | 4 Process: || A, Process: | A2Process | 4 Process: J A,Process: | A, Process: | 2 Process:
ARMA(LD) [ARQ) ARMA(L2) |AR(1) WhiteNoise (ARMA(L1) [AR(1) AR(1) ARMA(21)
$=01 |g=-01 [4=0B Jg-02 |P=02 |46=002 [g¢=02 [4=02 [4=08
6,=01 6,= 087 6,= 001 6,=-0.01

t 6= 013 8,= 001

1 0.726 0.451 1.177 0.425 -0.105 0.320 0.425 0.496 0.921
2 0.7'_74 0.711 1.485 0.470 0.204 0.674 0.470 0.525 0.995
3 0.764 0.111 0.875 0.591 -0.089 0.502 0.591 0.514 1.105
4 0.656 0.239 0.8%5 0.553 0.113 0.666 0.553 0.456 1.009
5 0.677 0475 1.152 0.537 -0.311 0.226 0.537 0.479 1.016
6 0.455 0.379 0.834 0.390 -0.219 0171 0.390 0.516 0.906
7 0.500 0.314 0.814 0.530 -0.080 0.450 0.530 0.501 1.031
8 0.710 0.571 1.281 0.371 0.201 0.572 0.371 0.655 1.026
9 0.668 0.576 1.244 0585 -0.131 0.454 0.585 0.594 1.179

10 0.332 0.627 0.959 0.452 -0.015 0.437 0.452 0.308 0.760

11 0.399 0.457 0.79% 0.603 0.071 0.674 0.603 0.422 1.025

12 0.430 0.502 0.932 0.437 0.426 0.863 0.437 0.637 1.074

13 0.424 0.152 0.576 0.382 -0.374 0.008 0.382 0.551 0.933

14 0.536 0.398 0.934 0.342 -0.058 0.284 0.342 0.556 0.898

15 0.514 0.359 0.873 0.521 0.040 0.561 0.521 0.554 1.075

16 0.887 0.450 1.337 0.538 -0.087 0.454 0.538 0.496 1.034

17 0.812 0.376 1.188 0.528 -0.137 0.391 0.528 0.519 1.047

18 0.554 0.331 0.885 0.342 0.184 0.526 0.342 0.356 0.698

19 0.606 0.550 1.156 0.470 -0.014 0.456 0.470 0.421 0.891

20 0.346 0.223 0.569 0.723 -0.128 0.595 0.723 0.422 1.145

21 0.398 0.822 1.220 0.663 0.166 0.829 0.663 0.422 1.085

22 0.755 0.524 1.279 0.636 0.197 0.833 0.636 0.272 0.908

23 0.684 0.200 0.884 0.423 0.284 0.704 0.423 0.332 0.755

24 0.306 0.508 0.814 0.538 0.139 0.677 0.538 0.671 1.209

25 0.382 0.911 1.293 0.511 0.315 0.826 0.511 0.535 1.046

26 0.662 0.698 1.360 0.415 0.028 0.443 0415 0.622 1.037

27 0.606 0.762 1.368 0.522 -0.250 0.274 0.522 0.588 1.110

28 0.372 0.103 0.475 0.545 0.400 0.940 0.545 0.255 0.800

29 0.419 0.640 1.059 0.477 -0.129 0.812 0477 0.388 0.865

30 0.334 0.405 0.739 0.635 0.177 0.812 0.635 0.554 1.189
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Table 1(b). Numerical Examples of Stochastic Failure Rates

Model| A1 Process: | 2;Process: | A Process: | A:Process: | Az Process’ ) 3 Process: || 4, Process: | A,Process: |4 Process:
MA(D)  |[MAQ)  [MAQD)  [ARMA(L]) |ARQ) ARMAQLD [AR() MA()  |ARMA(L2)
6,203 |6=03 [6=03% [#=02 [gE=02 [4=001 [g=02 [63=03 |&=047

6,= 01 6,= 001 6,= 047

t 6,= 053

1 0.588 0.459 1.047 0.437 0.134 0571 0.425 0.588 1013
2 0.370 0.183 0.553 0.485 -0.295 0.190 0.470 0.370 0.840
3 0.501 0.348 0.849 0.475 0.121 0.596 0.591 0.501 1.092
4 0.568 0.598 1.166 0.594 0.032 0.626 0.553 0.568 1.121
5 0.527 0.448 0.975 0.570 -0.040 0.530 0.537 0.527 1.064
6 0.566 0.801 1.367 0.602 -0.175 0.427 0.390 0.566 0.956
7 0.543 0.589 1.132 0.596 -0.194 0.402 0.530 0.543 1.073
8 0.374 0.451 0.825 0.431 0.334 0.765 0.371 0.374 0.745
9 0475 0.534 1.009 0.464 0.119 0.583 0.585 0.475 1.060

10 0.702 0.485 1.187 0.615 0.355 0.970 0.452 0.702 1.154

11 0.566 0.514 1.080 058 | -0.048 0.537 0.603 0.566 1.169

12 0.596 0.399 0.995 0.468 -0.147 0.321 0.437 0.596 1.033

13 0.578 0.468 1.046 0.491 -0.167 0.324 0.382 0.578 0.960

14 0.143 0.559 0.702 0047 | -0.264 | -0.217 0.342 0.143 0.485

15 0.404 0.505 0.909 0.136 -0.215 -0.079 0.521 0.404 0.925

16 0.888 0.373 1.261 0.622 0.237 0.859 0.538 0.888 1.426

17 0.598 0.452 1.050 0.524 0.204 0.728 0.528 0.598 1.126

18 0.430 0.576 1.006 0.405 -0.174 0.231 0.342 0.430 0.772

19 0.531 0.501 1.032 0.429 -0.023 0.406 0470 0.531 1.001

20 0535 0.291 0.826 0415 -0.131 0.284 0.723 0.535 1.258

21 0532 0.417 0.949 0.418 0.054 0.472 0.663 0532 1195

22 0.443 0172 0615 0.422 0.385 0.807 0.636 0.443 1.168

23 0.4% 0.319 0.815 0.421 0.156 0577 0.423 0.496 0.919

24 0.732 0.750 1.482 0.469 -0.067 0.402 0.538 0.732 1.270

25 0.591 0.491 1.082 0.460 0.084 0.544 0511 0,591 1.102

26 0.376 0.623 0.999 0481 | -0.132 0.349 0.415 0.376 0.791

27 0.505 0.544 1.049 0477 0.078 0.555 0.522 0.505 1.027

28 0.537 0.313 0.850 0.861 0.121 0.982 0.545 0.537 1.082

29 0.517 0.451 0.968 0.784 -0.371 0.413 0.477 0.517 0.994

30 0.553 0.982 0.153 0.502 0.424 0.926 0.635 0.553 1.188
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Figure 4. Theoretical and Empirical Bathtub Failure Rate of Burn-In

6. Non-linear Time Series Modeling of Failure Rates

For which components or systems is burn-in effective? Another way of posing this
question is by asking, "For which distributions (which model the lifetimes of components
or systems) is burn-in effective?” First, it seems resonable to rule out classes of
distributions which model wearout. The reason for this is that objects which become more
prone to failure throughout their life will not benefit from burn-in since burn-in
stochastically weakens the residual lifetime. Consequently, distributions which have
increasing failure rate or other similar aging properties are generally not candidates for
burn-in.

For burn-in to be effective, lifetimes should have high failure rates initially and then
improve. Since those items which survive burn-in have the same failure rate as the
original, but shifted to the left, burn-in, in effect, eliminates that part of the lifetime where
there 1s a high initial chance of failure. The class of lifetimes having bathtub-shaped
failure rates has this property. For this type of distribution the failure rate starts high( the
infancy period), then decreases {o approximately a constant(the middle life) and then
increases as it wears out {(old age). As suggested, by the parenthetical remarks, this
distribution is thought to describe human life and other biological lifetimes. Certain other
mechanical and electronic lifetimes also can be appropriated by these distributions. This
type of distribution would seem to be appropriate for burn-in, since burn-in eliminates the
high-failure infancy period, leaving a lifetime which begins near its former middle life.

Most definitions of bathtub-shaped failure rates assume the failure rate decreases to
some change point (#), then remains constant to a second change point (#), then
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increases. The case # =#(i.e., no constant portion) is often adequate as an assumption in

some theoretical results. We give the definition below.

Definition. A random lifetime X with distribution function F(9, survival function
F(D=1-F(d, density A#H and failure rate A(D=AH/F(H is said to have a
bathtub-shaped failure rate if there exist points 0<#<#<oo, called change points, such

that
decreasing for 0<#t,

A(D s | constant for {H<K &,

increasing for << o [2].

Figure 4 shows the theoretical and empirical bath-tub failure rate of burn-in. Hence the
analysis of such bath-tub failure rate are better modeled by a non-linear time series
approach[12] rather than the distribution approach.

7. Summary

This paper presents a new approach to the modeling of failure rate of parts/systems that
operate under varying operational & environmental conditions. The analysis of such failures
are better modeled by a time series approach rather than the distribution approach.
Nlustration examples are discussed using simulated data.

Bathtub failure rates of burn-in can be also represented by a non-linear time series
modelling.

It is our hope that this paper will be playing an important role in the developments of

new and better failure rate models considering real world situations.
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