THERBRGR B 218 F 458 1998%F 28 193

Realization of the Concept of Responsiveness into a
Computer System Using the Blackboard Architecture

- EW FERE ASE AR Aageld HE wg AN 4E -

¥

Kwang Seok Lee"
o] #4

Byung Wook Lee’
| ol ¥&
Han Suk Ko®
Iy

Byung Chool Won"
4 43

8 A

B =g AU Wstsis QAAYE $5A717] A5t AgEe] YnHoz A
I Y& ‘H- W (responsiveness) FE AHE Aadd HEdE R B Aol
WA g e Yvgoez A o, A4, o4y 4342 FHUL B AFANE o
A% ‘Hd W BB T (blackboard) TFRE o] 43t ‘W 2'(responsive layer)& ¥
ste] MSLTRAINOIZ T 3= dA Axde] Agstdrt e 2'¢ ¥y wg B3¢ 43
Hog olysE ‘A A& (knowledge source)st FHO FF 2FL ¥ ‘TRz FAY
thoHaA B B olE oldst: g e Wast: ALeAe §3F 2347 Urte
A5g AF @t

1. Introduction

Many people talked about a cdmputer system responsive to the user’s needs [8, 10, 20,
211. However, they didn’t provide ekact meaning of responsiveness and any prototype
responsive system. This paper is about the concept of responsiveness in computer systems.
This paper discusses the conceptual background of the concept and a prototype responsive
system called MSLTRAIN.

The term responsiveness comes from the human world. Responsiveness is a valuable
property human beings or groups of human beings have shown for their success. We can
think of lots of examples: responsive secretaries to their bosses[4], responsive nurses to
their patients[17], responsive salespeople to their customers[9], responsive governments to
their people[27], responsive schools to the parents of their students[12], responsive teachers
to their students(23], etc. For example, a responsive secretary is willing and able to listen
to and understand the boss’s needs and provides appropriate and timely services.
Responsiveness implies a reasoning process occurring inside the human being. I we

* S 9218 A A (Korea Atomic Energy Research Institute)

194 o] F Y .ol 5.2 @4 -4 & ‘HW TZE AHEE ANE A2dde HE v g 4E

define the process and transfer it to computer systems, we can have computer systems
responsive to the user’'s needs.

When we talk about responsiveness, we assume there are two components: a responsive
server(computer system) and a receiver to which the server is responsive(user). The goal
of responsiveness is to satisfy the user's needs by providing appropriate responses. This
paper explains the responsiveness process and presents a prototype responsive system into
which the responsiveness process has been implemented.

2. The Responsiveness Process

Responsiveness is a property of the server toward the user. In computer systems, we
can think of two kinds of situations in which the user’s needs changes: 1)different users
are using the system, and 2)the same user is using the system at different times. If the
system’s response doesn’t evolve as the user’'s needs changes, then we need change the
state of the system to match the changed needs of the user. Usually system designers do
the change process, which limits the capability of the tool to respond to changes in the
user’'s needs. If we transfer the role of the designer to the system, it will improve the
system’s capability to respond to the changes. Responsiveness implies the system’s
automatic change in the system’s projection, by changing its state to match the change in
the user’s needs caused by the change in the user’s state.

Responsive process is a process to infer the user’'s needs and provide responses
appropriate for the user's needs. I divide the process into four stages: observing,
understanding, interpreting and implementing. With these four stages, the responsiveness
process is continuous and cyclic. This cyclic feature of responsiveness implies learning
about the user. As the cycles go on, the server learns about the user and uses that
knowledge in later reasoning. This learning aspect is vital for responsiveness.

2.1 Observing

Responsiveness starts from observation. By becoming a better observer, a responsive
secretary can draw conclusions that will enable him or her to anticipate certain actions(4].
The responsive secretary observes the boss and the surrounding environment. From the
observation, the secretary gets data about the boss. Observation is gathering data about
the user with all perception devices. The issue here is what to observe and how to
observe. The secretary knows what is important to the boss and therefore knows what to
observe about the boss. The secretary has observing devices such as eyes, ears, feeling,
etc. and has observing management processes such as a regular review of the boss’
calendar.

In. computer systems, the primary way of observing is monitoring the user’s interaction
with the system. Monitored data can be used: in diagnosing and providing the user
appropriate aid, in aSsessing user performance and user satisfaction, etc.[20]. Other
primitive forms of observing may be possible. For example, Starker & Bolt[26] use
eye-tracking to monitor the user looking at a graphics screen in a gaze-responsive
information display system. Computer vision and speech recognition will extend the
meaning of observation in terms of both what to observe and how to observe in
computer-based management tools.

THRESHEGIR K 2% B 458 1998% 27 195

2.2 Understanding

The second stage is understanding. Having observed data and prior knowledge about
the user, the server reasons what the user really wants or needs. In this stage, the data
about the user are transformed to information about the user. For example, the responsive
secretary reasons that the boss needs information showing the trend of recent sales after
reviewing the incoming letters and remembering the boss preferred information about the
matter in the letters. In computer systems, it means to reason the goal of the user from
the input of the user to the system and the context and then to reason the needs of the
user from the goal of the user and the characteristics of the user. Here all reasoning
occurs in terms of the user.

2.3 Interpreting

The third stage is interpreting. The server reasons what it can do to satisfy the user's
needs, that is, the result of understanding. In this stage, a decision on what and how to
respond is made based on information about the user. For example, the responsive
secretary decides to obtain a specific line chart showing the trend of recent sales. In
computer systems, this stage is the design of appropriate responses to the user’'s needs.
Here all reasoning occurs in terms of the system. '

2.4 Implementing

The fourth stage is implementing. The server provides the result of interpreting, that is,
a specific response. The responsive secretary prepares a line chart and attaches it to the
letters. This stage implies capabilities of the server actually doing something, such as
functionality and user interface capability. From the management perspective, if I say the
first three stages correspond to information gathering and decision making, then this last
stage corresponds to taking action. Without action, the decision is meaningless[6].

3. MSLTRAIN: A Prototype Responsive System

I implemented the responsiveness process into a decision support system called
MSLTRAIN. MSLTRAIN was developed to help managers schedule their training needs on
computer packages. I used the Texas Instruments Explorer Al workstation with LISP. I
added a responsive layer onto the original application program of MSLTRAIN. The
responsive layer essentially overlays the application program and upgrades the system's
responsiveness in both decision support and interaction support. The major feature of
MSLTRAIN with the responsive layer is to provide information the user may need in the
format (table or graph) and in the scope (whole or part) the user may prefer even without
the user’s request.

3.1 Overall Working Mechanism

MSLTRAIN works within two processes: the application process and the responsive
layer process. The responsive layer process works as a layer on the application process.
The responsive layer process continuously observes the application process and designs or
modifies system parameters. If the user inputs something to the system, the application
process accepts the input, which invokes the responsive layer process. Then the responsive

196 o] F Y-l -3¢ 4 949 & ‘TR TEE ALY ARY Aadde HE B A HE

layer process analyzes the input, reasons the user’s goal, designs an appropriate response,
and shows the response or sets the values of some system parameters the application
process needs.

The connection between the two processes is realized using reporters and executors.
The reporter resides in the application process as a demon and reports to the responsive
layer process what happens in the application process such as the user’s input, end of
processing of some function in the application process, etc. The reporter has knowledge of
what and when to report. The executor also resides in the application process as a demon
and executes what the responsive layer process orders. Through the executor, the
responsive layer process can change responses generated by the application process.

3.2 Architecture of the Responsive Layer

I applied the blackboard érchitecture to the design of the responsive layer. Several
researchers support the blackboard architecture for modeling the user and designing
responses to the user[l, 2, 5, 16, 25]. The blackboard architecture has been used in several
areas such as speech recognition[7], errand planning[11], cooperative distributed systems
[14], cockpit information management[3], self-improving instructional planner(15], etc. The
blackboard architecture is a problem-solving framework based on the distributed problem-
solving paradigm, which means the cooperative solution of problems by a collection of
problem-solving experts when one expert doesn’t have enough knowledge to solve the
problem. The blackboard architecture usually consists of three major components:
knowledge sources, blackboard data structure, and a control mechanism[18, 19].

3.2.1 Blackboard

A blackboard is a structured, globally accessible database containing intermediate or
partial results of problem solving needed by and produced by knowledge sources. Typically,
the blackboard is partitioned for representing hypotheses at different levels of abstraction
and mediates the cooperative activities of multiple knowledge sources. Knowledge sources
interact with each other only through the blackboard.

MSLTRAIN maintains a blackboard consisting of seven hierarchical levels: input,
history, semantics, goal, user characteristics, needs, and design. The levels hold
intermediate solution results of the responsiveness process as messages.

Input

This level keeps the primitive form of the user’s input. Messages in this level contain
the following information: type of input (command or continue), time when the user made
the input, content of input, input device (keyboard or mouse), input window (menus,
decision windows), input reference (the name of the item selected, number of step, etc.).

History

This level keeps the history of the interaction with the user. Messages in this level
contain the following information: the name of a variable and its value. For example, total
number of commands, steps the user went through, total use, total number of errors, total
number of inputs made with the mouse, ratio of mouse use, error ratio, etc.

TRESRGIE F 218 £ 468 1998F 27 197

Semantics _

This level keeps what the input means in terms of the application. Messages in this
level contain the following information: type of action, object of the action, and reference of
the action. '

Goal

This level keeps the goal of the user. Messages in this level contain the following
information: type of goal(decision or information access), focus of the goal (selection of
items in the menu, decision on a specific package, or decision in general), and content of
the goal(schedule, change schedule because of the 'o'rganizational proficiency, or change
schedule because of person-days in some month).

User Characteristics

This level keeps the characteristics of the user. Messages in this level contain the
following information: the name of a variable and its value. For example, portrayal format
preference, information scope preference, input device preference, decision pattern, etc.

Needs .

This level keeps the user’'s needs. Messages in this level contain the following
information: type of needs(information, cursor move, etc), required type of action, and
specification of the needs.

Design

This level keeps the design of responses. Messages in this level contain the following
information: type of design and values of elements of the design. Usually, at first, the
elements don't have any values. Knowledge sources fill the message until all elements get
values.

3.2.2 Knowledge Sources
Knowledge sources(KS’s) are problem-solving experts working together to solve a
problem. Each KS has necessary but not sufficient problem-solving knowledge. However,
by working together, KS's exercise full knowledge of problem solving. The objective of
each knowledge source is to contribute information that will lead to a solution to the
problem (Nii, 1986). KS’s are kept separate and independent. They communicate through a
blackboard by posting and reading messages on it,
KS's are the key to the responsiveness process. They have the knowledge of observing,
understanding, interpreting and implementing.
In MSLTRAIN, knowledge sources can take the following actions to the blackboard:
s POST-MSG © post a message on a level in the blackboard,
e UPDATE-MSG : update a message already posted on a level in the blackboard, and
e FILL-MSG @ fill in an attribute value to a blank message on a level in the
blackboard.
Each KS corresponds to a stage in the responsiveness process: observe, understand,
interpret and implement. Observing knowledge sources are triggered by the reporter’s

198 o] FAH-ol -2 @H-449 & ‘FE TxE ALY AFE Aadde ‘HA By A 44

report or events generated by the change in the "INPUT” level in the blackboard. These
KS’s post their messages to the "SEMANTICS” level or update messages in the
"HISTORY” level in the blackboard. Understanding knowledge sources are triggered by
events generated by the change in the "SEMANTICS,” "HISTORY,” or "GOAL” level in
the blackboard. These KS's post their messages to the "GOAL,” the "USER-CHAR,” or
"NEEDS" level in the blackboard. Interpreting knowledge sources are triggered by events
generated by a change in the "NEEDS” or "DESIGN” level in the blackboard. These KS's
post their messages to the "DESIGN” level or fill the messages in the "DESIGN’ level in
the blackboard. Implementing knowledge sources are triggered by events generated by the
change in the "DESIGN” level in the blackboard. These KS's display information to the
user or set the values of system parameters.

3.2.3 Control Mechanism .

The control mechanism specifies a general problem-solving behavior. In the blackboard
architecture, there is a set of control modules that monitors the changes on the blackboard
and decides what actions to take next[19]. The control modules are responsible for
determining which knowledge source should act at each point in the problem-solving
process. The modules use various kinds of information globally available. Several kinds of
control mechanisms exist in the blackboard architecture[7, 11].

In the responsive layer process, a scheduler controls the blackboard actions: triggering,
choosing, and executing knowledge sources. The scheduler maintains the following
information:

e Goal : the goal to accomplish, given according to the report from the application

process;

e Events : a list of events generated by a change in the blackboard;

e Triggered KSAR’s ' a list of knowledge source activation records (KSAR) that
were triggered but didn't satisfy the precondition;
Invokable KSAR's : a list of knowledge source activation records that were
triggered and satisfied the precondition ;
Control Strategy : a strategy to choose among the invokable KSAR's.

The scheduler goes through the following steps iteratively.

1. Check whether the goal is satisfied. If so, stop. Otherwise, go to the next step.

2. Update the set of KSAR's. Inspect all knowledge sources to determine if they can
be triggered by the event created. Add the knowledge sources triggered to the
triggered-KSAR list.

3. Inspect all KSAR's in the triggered~KSAR list to determine if their precondition can

- be satisfied with the current solution state. If so, add them to the invokable-KSAR
list and delete them from the triggered-KSAR list. If the invokable-KSAR list is
empty, stop. Otherwise, go to the next step.

4. Select one KSAR from the invokable-KSAR list with the control strategy. The
strategy is to choose one KSAR whose To-Level is the lowest level in the
blackboard among the invokable KSAR's.

5. Execute the selected KSAR. Delete the KSAR from the invokable-KSAR list. Go to
Step 1.

ITEGBEEIE F 214 ¥ 458 1998% 25 19

If the scheduler finishes the steps, the responsive layer process stops and waits until
there is new report from the application process.

4. Conclusion

This paper presented the conceptual background of responsiveness in computer systems
and a prototype responsive system implementing the concept. This paper provides a way
for a computer system to respond to needs varying among different users(individual
difference) and evolving over time(evolution of the user). I expect responsive systems to
provide more effective support to users and result in higher user satisfaction, higher user
performance, and ultimately, higher success rates and more sharing of computer systems.
To a limited degree, a laboratory experiment supports that responsiveness in a computer
system improves user performance and user satisfaction[13].

References

[1] Alty, J. L., & McKell, P, "Application Modeling in a User Interface Management
System”, In: Harrison, M. D, & Monk, A. F. (eds.), People and Computers:
Designing for Usability: Proceedings of the Second .Conference of the British
Computer Society Human Computer Interaction Specialist Group, Cambridge:
Cambridge Univ. Press, 1986.

[2] Balzert, Hemut, “A Blackboard Architecture for the Realization of Software-Ergonomic
Demands”, In: Bullinger, H. J, & Shackel, B. (eds.), Human-Computer Interaction
INTERACT '87, New York: North-Holland, 1987.

[3] Baum, L., Kaiser, K, Blevins, D., Miller, B., Jagannathan, V., & Anderson, M., Adapting
the Blackboard Model for Cockpit Information Management, Boeing Technical Report,
1987.

[4] Belker, Loren B., The Successful Secretary’ You, Your Boss, and the job, New York:
AMACOM., 1981.

[5] Belkin, N. J., Hennings, R. D., & Seeger, T., "Simulation of a Distributed Expert-based
Information Provision Mechanism”, Information Technology, 3(3), 122-141, 1984.

{6] Drucker, Peter F., The Effective Executive, Pan Books Ltd., 1967.

(71 Erman, L. D., Hayes-Roth, F., Lesser, V. R., & Reddy, D. R., "The Hearsay-II
Speech-Understanding System: Integrating Knowledge to Resolve Uncertainty”, ACM
Computing Surveys, 12(12), 213-253, 1980.

[8] Fitter, Mike, & Sime, Max, "Creating Responsive Computers: Responsibility and Shared
Decision-Making”, In: Smith, H. T., & Green, T. R. G. (eds.), Human Interaction with
Computers, New York: Academic Press., 1980,

(9] Grikscheit, Gary M., Cash, Harold C., & Crissy, W. J. E., Handbook of Selling:
Psychological, Managerial, and Marketing Bases, New York: John Wiley & Sons,
1981.

[10] Hayes, Eugernic B., & Reddy, Raj, "Breaking the Man-Machine Communication Barrier”,
Computer, March, 19-30, 1981.

200 ol -l -1 FY -4 & ‘T FRE ALY FRE Aadde HA we g 48

{11] Hayes-Roth, Barbara, "A Blackboard Architecture for Control”, Artificial Intelligence,
26, 251-321, 1985, :

[12] Johnston, William F., Responsiveness in American Schools Overseas: Discrepancies
between Parental Expectations and School Performance, Unpublished Ph.D.
Dissertation, Virginia Tech, 1988.

[13] Lee, Kwang S., Operationalizing and Implementing the Concept of Responsiveness in
a Managemnent Tool, Unpublished Ph.D. Dissertation, Virginia Tech, 1991.

[14] Lesser, Victor R., & Corkill, Daniel D., "Functionally Accurate, Cooperative Distributed
Systems”, IEEE Transactions on Systems, Man, and Cybernetics, SMC-11(1), 81-96.
1981.

[15] Macmillan, Stuart A., & Sleeman, Derek H., "An Architecture for a Self-improving
Instructional Planner for Intelligent Tutoring Systems”, Computational Intelligence, 3,
17-27, 1987. .

[16] McCalla, Gordon I, Bunt, Richard B., & Harms, Janelle J., “The Design of the SCENT
Automated Advisor”, Computational Intelligence, 2, 76-92, 1986.

{17] Murray, Malinda, Fundamentals of Nursing, Englewood Cliffs: Prentice-Hall, 1980.

(18] Nii, H. Penny, "Blackboard Systems: The Blackboard Model of Problem Solving and
the Evolution of Blackboard Architecture”, AI Magazine, 7(2), 38-53, 1986.

{191 Nii, H. Penny, "Blackboard Systems: Blackboard Application Systems, Blackboard
Systems from a Knowledge Engineering Perspective”, Al Magazine, 7(3), 82-106, 1986.

[20] Penniman, W. D., & Dominick, W. D., "Monitoring and Evaluation of On-line
Information System Usage”, Information Processing & Management, 16, 17-35, 1980.

[21) Rich, Elaine, Building and Exploiting User Models, PhD. Dissertation,
Carnegie-Mellon University, 1979.

[22] Rubin, Kenneth S., Mitchell, Christine M., & Jones, Patricia, "Using a Blackboard
Architecture for Dynamic Intent Inferencing”, Proceedings of the IEEE International
Conference on Systems, Man, and Cybernetics, 1150-1153, 1987.

[23] Sleeman, D. & Brown, J. S. (eds.), Intelligent Tutoring Systems, New York: Academic
Press, 1982.

[24] Smith, J. Jerrame, “SUSI - A Smart User-System Interface”, In: Johnson, Peter, &
Cook, Stephen (eds.), People and Computers: Designing the Interface - Proceedings
of the Conference of the British Computer Society Hurnan Computer Interaction
Specialist Group, Cambridge, Cambridge Univ. Press, 1985.

[25] Smith, Reid G., & Davis, Randall, "Frameworks for Cooperation in Distributed Problem
Solving”, IEEE Transactions on Systems, Man, and Cybernetics, SMC-11(1), 61-70,
1981.

[26] Starker, India, & Bolt, Richard A., "A Gaze-Responsive Self-Disclosing Display”,
Human Factors in Computing Systems: Proceedings of CHI ‘90 Conference, 3-9,
1990.

[27] Zeigler, L. Harmon, & Tucker, Harvey J., The Quest for Responsive Government: An
Introduction to State and Local Politics, North Scituate: Duxbury Press, 1978.

