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Adaptive Coefficients for Hopfield Neural Networks Solving

Combinatorial Optimization Problems
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1. Introduction

Since Hopfield neural networks were first employed to solve combinatorial optimization
problems, especially for the Traveling Salesman Problem(TSP) in the original article[7],
many applications[8,11,13,16] have been found for this network because of its potential for
parallel computation and computational advantage when it is implemented with analogue
VLSI techniques. But when the Hopfield network with the original form of the energy
function is used, many reports[8,15] have shown that the solutions obtained for the TSP
were either invalid or of low quality. Some alterations of the energy formulation[1,34,8]
have been suggested to overcome this difficulty, but none of them have shown great
improvement.,

Now most concern seems to be not with finding more promising energy formulations,
but more robust ways of selecting proper coefficients for the terms in the energy function,
which represent the constraints and objective function to be minimized, because of the
extreme sensitivity of the network to the values of the parameters. To find a fundamental
explanation for the behavior of the network, some theoretical investigations[2,14] were
conducted by analyzing the eigenvalues of the weight matrix and Lagrange multipliers.
While these investigations vielded satisfactory explanations for the behavior of the network
in terms of the energy coefficients, they did not offer a practical method for computing
effective values for the coefficients.

To alleviate the difficulty of finding suitable parameters for each term in the energy
function, which seems to be another hard problem added to the original problem to be
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solved, we propose a methodical ,procedure for determining the coefficients adaptively
based on the energy values as the network evolves. By util_izing the energy function
directly, we are able to' control the amotnt 'v‘vhich each term contributes to the total
energy. The energy .terms can be used to guide the -network toward?valid, high quality
solutions, by properly balancing the coefficients of competing terms. This approach is
applied to the TSP, which is known[9] to be among the harder problems to be solved by
pure Hopfield type neural networks. In order not to increase the computational burden due
to the evaluation of the energy of each term as the network progresses, an efficient
method of incrementally updating the energy value of each term with minimal calculation is
described. In a similar manner, the values of individual terms in other forms of Hopfield
energy functions also can be easily ca]cﬁ]atéd and updated at each iteration.

2. Energy Formulation and vDynamics of Hopfield Network

TSP is a well known example of a class of computationally hard problems[6] which
requires impractical amounts of time (exponential computational complexity) to find an
optimal solution as the problem size increases. In this problem, every city in a given set of
N cities is to be visited once and oniy once. A tour may begin with any city, and ends by
returning to the initial city. The goal for the solution of this problem is to find a tour
which has the shortest possible length. -

With a Hopfield network, this problem is represented by a N by N matrix of neurons in
which a valid solution is achieved when the network reaches a state of a permutation
inatrix. One form of the energy function which has been suggested(12] is :
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In the network model, Indices x and y refer to cities, and i and j refer to positions of the
cities in the tour. The detailed explanation can be found in other literatures{7,12].

When the energy is minimized, the network is expected to have reached a state
corresponding to a valid solution of TSP. The implication of the minimization of the energy
terms is as follows. The first two terms are inhibitory in nature while the next two are
excitatory. All four constraints can be satisfied simultaneously when each row and column
have.a single neuron activated. These four terms together work to enforce the validity
constraints of the problem. When the constraints of the TSP are satisfied by these terms,
the fifth term gives the value of the corresponding tour length. This term represents the
TSP objective function. Its value is to be made as small as possible while maintaining the
validity of the tour.

To guarantee convergence of the networki5,12], the motion dynamics are obtained from :
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For simulation with a digital computer, updating of each neuron usually follows Euler's
first order difference equation :

(00 = e (D (25 ) @

A simulation is performed by initiating the neurons’ activations with random values, then
allowing the activations to evolve according to the governing equations for the network
dynamics. The activations are 1terat1vely updated until the total energy converges, and the
status of the neurons in the network is inspected to determine whether or not a valid
solution of TSP has been obtained.

It is easily seen that the difficulty of finding valid, high quality solutions in part due to
the problem of selecting appropriate values for the coefficients of the energy components.
The behavior of the network is highly sensitive to the values of these coefficients,
previously[7,15] the determination of appropriate values was primarily done by experimental
trial and error.

3. Hopfield Network with Adaptive Coefficients

3.1 Determination of Coefficients

As the network evolves in the direction of minimization of the total energy, each term in
the energy function competes with the other terms to influence the path to be followed.
The explicit way in which each term contributes to the total energy at each stage is seen
by an analysis of the changes of the values of each energy term. In our approach, to find
good coefficients for the energy function, the energy of each component is traced through
each epoch of iteration. At the same time, it is utilized to control the effect of each term
on the evolution of the network toward the point we hop to reach. In this way, according
to the distance to the goal (minimal value) of each term, the corresponding coefficients are
either relatively emphasized by increasing the value, or de-emphasized by decreasing the
value, until a balanced relationship among the coefficients is reached.

The coefficients are updated after every epoch of iteration until they reach a state of
near equilibrium in which all coefficients are relatively stable, thereafter competing with
each other with balanced strength. Then the final coefficient values obtained are used to
set weight connections between all neurons, and the network is run again to obtain the
final solution. The overall algorithm is described as follows:
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(a) initialize all energy coefficients to 1 ;

(b) calculate each energy term ;

(c) repeat until all coefficients are stabilized ;
(c-1) update coefficients ;
(c-2) run network one epoch updating neurons ;
(c-3) update each energy term incrementally ;

After every epoch, the new coefficients are computed(c-1) depending on the current
energy of each term. The new coefficients are computed as follows :
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where V is the vector of outputs of all neuron.

This is a steepest ascent procedure. It has the effect of maximizing the energy function
with respect to its coefficients. While this may seem counter-intuitive at first, it has the
desired effect of increasing the coefficients of those terms that are contributing the most to
the value of the energy function. It is those terms that most need to be reduced during
network iteration. Normalization is necessary in order for the coefficient values to stabilize,
which simply is done by :
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3.2 Computation of Energy Update

Since the computational work required to evaluate directly the current energy level of
each term of the energy function is somewhat expensive, an incremental method has been
devised. It is performed during each update of the neurons. In this way, the new energy
value can be easily computed without requiring a complete re-evaluation at every change
of activations.

The change of energy when a neuron’s output Vyi{#) is changed to Vi {t+1) is
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where & V=V, (t+1)— V. {D.

Since most of the terms in Eq.(7) are already computed when wupdating the neuron
activation uxit+1), such as in Eqs.(2) and (4), the only parts requiring additional
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computation are the ones outside the summations. In this way, once the total energy is
computed at the initialization stage of the main procedure, the new energy value can be
efficiently obtained after each update of neurons.

4. Simulation and Result

In our simulations, a 10 city TSP, which appeared in the original Hopfield paper, and a
20 city TSP (randomly generated), are simulated with different random initializations of
neurons. The sigmoid gain function and neuron initialization as proposed by Hopfield[7] are
used. Since the steepness of the gain function seems to be proportional to the size of time
step(4t) in our experiments, altering either one of them is enough to maintain network
stability. In our studies, 4t is set to 0.01. The threshold for deciding neuron’s on-off
status is 0.5.

Figure 1 shows the change of each coefficient, with all coefficients being adapted, with
normalization so that Ci+Co+Ca+CatCs=1. It is apparent that C; and C; tend toward a
common value, as do Cz and C4 also. As seen from the graph, the coefficient of the
objective term is relatively very large, because that term has a large portion of the total
energy. This is due to the fact that the energy of that term (tour length of solution)
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Figure 1. Coefficients (all adapted) Figure 2. Coefficients (Cs fixed)

cannot be made lower than a certain but unknown value corresponding to an optimal valid
solution, unlike the other energy terms. The terms representing row and column constraints
(Ist through 4th terms) all go to zero for a valid solution. This can cause the network to
reach invalid solutions by trying to reduce the objective function value below the minimal
distance necessary for a solution. In order to overcome this situation, we must allow the
network to maintain a reasonable distance energy. Thus the coefficient of the objective
term may be specified before the network begins adaptive determination of the other
coefficients. A reasonable value of Cs is specified first, with some experimentation.

Figure 2 depicts the change of all constraint coefficients with Cs fixed, and
Ci1+Cot+(C3+Cy=1. Again we see that C; and C; tend toward a common value, as do Cs and
C4 also. In this way, the network found valid solutions more than 80% of the time. Some
examples of the solutions produced are shown in Table 1. Since the final coefficients with
this adaptive method are the ones which balance the network, the coefficients obtained are
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Table 1. Solutions found during Table 2. Solutions using final
adaptation values of coefficients
case 10 cities 20 cities case 10 cities 20 cities
1 3.08 576 1 * s
2 3.38 6.81 2 2.92 473
3 2.85 459 3 * 3.89
4 316 548 4 275 4.52
5 345 * 5 2.83 556
6 3.23 * 6 2.69 4.7
7 334 6.44 7 2.83 492
8 3.02 5.26 8 2.69 4.87
9 * 5.22 9 313 5.02
10 2.98 515 10 2.89 494
* no valid solution found * no valid solution found

used to rerun the network with the values of the coefficients being held fixed. Some
examples of the solutions produced with these coefficients are shown in Table 2. For
comparison, the same initialization with fixed values of coefficients as given by Hopfield[7]
for 10 cities yielded 15 valid solutions out of 100 trials with average length of 3.40.

In more than 80% of the 100 trials, the network produced valid solutions and the quality
of the solutions is much better than the solutions found during adaptation of the
coefficients. Some of the solutions are the optimal solution, and the others found are also
good solutions. Examples of solutions found are depicted in Figure 3.
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Figure. 3 Examples of Tours including the optimal solutions for 10 and 20 city TSP

By finding coefficient values adaptively, the quality of solutions using the same energy
formulation are much better than those reported in the literature[10]. Tables 3 and 4 show
the quality of the solutions using the following measure :

Cmndom _ Csol
Crandom - Copt (7)

Quality=
where Crandom 18 the average length of 10,000 random tours, Csu is the average length of
100 tours found by different initializations of the Hopfield network, and Cop is the optimal
tour length.
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Table 3. Quality of solutions found Table 4. Quality of solutions found
during adaptation after adaptation ‘
10 cities 20 cities 10 cities 20 cities
Copt 2.69 3.89 Cont 2.69 3.89
Crandorm 476 10.13 Crandom 4.76 10.13
Ceol 3.16 5.58 Csol 2.84 4.80
Quality 0.77 0.73 Quality 0.93 0.86

5. Summary and Discussion

We have proposed a systematic way to determine properly balanced coefficients in a
Hopfield network for solving TSP. Because the path of the network is guided by the
energy terms, its coefficients are found adaptively by the network itself. In this way, we
obtain good coefficients which help the network to find not only valid but also high quality
solutions. In spite of the improvements over previous reports, there are some other issues
to point out. To be more practical, the performance in the sense of solution quality needs
to be improved to be more competitive with currently available problem-tailored methods
for TSP. Also, as the problem size increases, the dimensionality requirement can be
another problem to be solved.
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