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1. Introduction
Let X,,X; * - X, be independent and identically distributed (iid) with E{ | X;| ]<oco.

Let Zy=0, Z,,=$X,~, n=1. The process {Z,, %=0} is called a random walk process.

Random walks are quite useful for modeling various phenomena. For instance, we have
previously encountered the simple random walk— P{X;=1}=p=1- P{X;=—1}— in which
Z, can be interpreted as the winnings after the nth bet of a gambler who either wins or
loses 1 unit on each bet. We may also use random walks to model more general gémbling
situations; for instance, many people believe that the successive prices:of a given compény
listed on the stock market can be modeled as a random walk. As we will see, random
walks are also useful in the analysis of queuing and ruin systems.

Let {a,} be a sequence of iid random variables with 0<a,<1 for all n. The RWIRE on
the integers is the sequence {X,} where X;=0 and X,, =X,+1,(X,—1) with
probability a, , (1 —a,). By the law of large numbers

a;=PX,=j+1 | Xy =7 Xp-g, = In-g, ", Xo= iy ; environment{a,})
is completely determined as the number of hits at j approaches infinity. _

If X, denotes the position of the random walk at time n, then {X,} is not, in general, a
Markov Chain(Kalikow, 1981). But the limit behavior of {X,} can be obtained by fixing the

environment and considering the limit behavior of the resulting Markov Chain. Now, we
briefly summarize the contents of each chapter.
In chapter 2, We discuss the basic concept and mathematical definition of RWIRE. In
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chapter 3, We illustrate some examples of RWIRE. Limit theorem for the RWIRE is
established in chapter 4(main part of this paper).

2. Basic concept of Mathematical definition of RWIRE

Consider the stochastic process which is the path of a particle which moves along an
axis with steps of one unit at time intervals of one unit also. Suppose that the probability
is p of any steps being taken to the right, and is ¢=1-—¢ of being to left. Suppose also
that each step is taken independently of every other step. Then this process is called the
unrestricted random walk. If the particle is in position 0 at time 0, determine the
probability that it will be in position % after » steps.

Let {Z,} be the stochastic process, where Z, is the position of the particle at time #»

that is, after » steps from its starting point 0. This stochastic process has a discrete time
parameter space {0,1,2,- + -} and a discrete state space {—<,: - -,—1,0,1, - - + oo,
Now each step X is an independent rv having distribution

m(X=1)=p, mMX==1)=g4
Initially Z;=0 after = steps

Z,=X\+X+ - - +X 1
Where éach X, is independently distributed as X. We can write equation (1) as

Z,=Z,,+X, (2)

Where each X, is idependent of Z,_;.

We wish to determine the value of
PP =p(Z,= k| Z,=0) 3)
Let random variable

(1 Xi=1 U
Y'_[O lf X,=—‘1 (2_1.2, ,n)

That is let random variable .Y;=-%-(X,'+l); then each VY, is an independent Bernoulli trial

with probability of success #. Then random variable R,=Y;+...+ Y,,=-'%—(Z,,+n is Bin

(n, ).
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Therefore

D= pAZ,= k| Zy=0)= pr{Ry= F(Zy+ W)= 5kt m)

={((k+nn)/2)p(k+n)/Zq(n—k)/2 (ktm)/2€S={0.1.2, - - - .7
0 (otherwise)
Since  E(R,)=mnp
W(R,) = npq
E(Z,)=EQ2R,— n)=2E(R,)—n=n(p—q (since p+q=1)
V(Z,)=V(Q2R,— n)=4W(R,)=4np (4)

We can call upon some quite deep theorems of probability theory to obtain the behaviour
of Z, when n is large.

For example, by the strong law of numbers, with probability one
%zn—»{; EZ,~p—q as nooc

That is, for large #, the particle will, if p> g, almost certainly drift in a positive direction
along the axis of motion, the mean step length being p—g¢. Also, by the central limit
theorem,

W, = Z,—n(p—q)

= T V(anpg) ~an N(0,1) random variable as #->co

So, from tables of N(0,1) distribution, for large n,

p(—1.96 <W,<1.96) =0.95
ie. pr{n(p— @) —1.96V (dnpg) <Z,< n(p—q) +1.96V (4npg)}=0.9

Now we discuss the definition of a random environment.

The definition of a random environment on an abelian group is given in Kalikow(1981).
The following is a summary of that definition in the case where the abelian group is the
integers. Let X be the set of all integer sequences by Z* and endowed with the o¢—
algebra F generated by the cylinder set in X. A RWIRE on the integers is a discrete time
stochastic process {X, ;n€Z"} with the integer state space. The measure which defines
the RWIRE is defined by a two step construction of a measure P(*) on (X, F). For L and
R will be fixed positive integers, let G be the set of all probability measures on {-L,-- R}
and let 4 be a probability measure G. It is assumed that L and R are minimal in the sense
that u{g=G : g(—L)>0} >0 and u{g=G : g(R)>0} >C.
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Definition 1. The random environment {a,} defined by g is an integer indexed sequence

of iid G-valued random variables with common distribution z.

Definition 2. An environment is a realization of the random environment {a,}.

Definition 3. Let X, be a Markov Chain on Z. A finite subset A of Z is called a
reflecting-to-the-right barrier for X, if Xy=2min(4) for some N=(0 implies X,=min(A)
for all. n=N. Reflecting-to-the-left barriers are defined similarly(Solomon, 1975).

3. Examples of RWIRE

Consider the nearest neighbor random walk on Z where at each time the process moves
to the left with probability 1/4 and to the right with probability 3/4. ‘We abbreviate this
probability law by writing 1/4 <3/4. If we say that 0 has environment 1/4 <3/4, we mean
that for any n, if the process is at 0 at time n, then at time n+l, it will be at -1 with
probability 1/4 and at 1 with probability 3/4. Now, we can be easily extended to the
nearest neighbor process on Z? where an environment is

D2

P3e— T > Py with p1+ byt Pyt py=

1

D4

Example 1. Consider the one dimensional case where the environment at each element of
Z is taken to be 0.02 < 098 with probability 0.99 and 051 < 049 with probability 0.01.
We denote this model in following fashion;

&= 0.02 < 0.98, g,= 0.51 « 0.49
w{g)= 0.99, x({g})= 0.01

Then it is easily proved that the process is transient; that moves to the right with
probability 1.

Example 2. Consider the two dimensional case where

1/4 1/4
g1= 0.02/2 0.98/2 &= 0.51/2 0.43/2
1/4 1/4
#({gl})': 0.99 ﬂ({gz})= 0.01

It seems still obvious, that this process is transient and moves to the right.
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Generalizing example 2. Consider the two dimensional case where

b] bZ
g1 = ¢ ay, 82=0C a;

d] dz
v{g)=t e{g)=1-p

where 0<p<1, a;+ b1+ a+ d1= at+ b2+ Ccyt d2= 1,

ay, blr 1 dl» az, b2v Cz,dz)O, al>cl» a2<CZv

Hai—cp) (-a_l b o ﬂ)
(1—-p)(cy—ay) ay’ by’ ey’ dy

then the process moves to the right with probability 1.

4. Limit theorem for the RWIRE

71

When the environment {a,} is fixed, Chung (1), page 65-71, uses systems of difference

equations to derive results which we summarize in Lemma 1, and 2. The limit behaviof of

the RWIRE(Main theorem) will be obtained by applying fluctuation theory to Lemma 2.

Definition 4. Fix the environment {e,} and let {X,} be the Markov Chain on Z with

transition matrix.
Mn, n+l)=a, Mn n-1)=48,=1 -ﬁz,,
For each integer n>1

finl'=P(Xn=eru#:j. 0=1.2- ot ,n_l IX():l)

£ =KX ,=j,some n21| Xy=1i)= ,Zf"”"

®
p—, n
mi;= ”Z.‘n'f; j
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In other words, f;", is the probability that, starting from state i, the first return to state
j occurs at the n-th transition, and is the mean recurrence time from i to j.

Definition 5. State 1 is recurrent it f;°;=1 otherwise called transient.
The following Lemma 1(Solomon,1975)is needed for the proof of main theorem.

Lemma 1. Fix {a,} with 0<a,<1 for all n; set o,=8,./a, and

Pp=01* *+ * 0, n>0

=¢_1* * * 0, n0

(i) Let i<j ; then
£ = ( > ——L—)( > —1——)—1<1 it 3~ (oo

n=—w Op...0; [\ nE=o 0,...0; n=1 P,

=1 if

iMs
>
=| [t
i
8

(i1) Let i>j ; then

= (”Z; 0',-...6,.)(”21_6,- .0 K _ if’;p”<oo

=1 if ;‘Sp,,=oo

(iii) If fy=1, then

m01=(1+0'0)+]_=&_m(1+0'j_1)d,~ ... Oy
Lemma 2. Fix {¢,} with 0<a,<1 for all n, then

(1) g(p_n)"‘=°°, "Z’p,,(c‘o implies !ti_.n;X,,=oo a.e.
(ii) g(p_n)_l<°°, ’gpn=°° implies Li_.rgoX,,=—oo a.e.
(i) (o '=co=, No, implies (X,) is recurrent

In fact —oo=lim inf X,< lim sup Xn=% ae
n—co oo

Proof. (i) if

1Aon<°° )

M
i
8
M

then Lemma 1. implies f =1 for i<j, but f}<1 for i>j.

Therefore lim X,=o a.e. Cases (ii) , (iii) are also clear from Lemma 1.
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Lemma 3. Let {Y;} °1° be a sequence of iid, nondegenerate finite valued random

variables; let Sn = Yi+ - - - +Yn

() 3L P(Sn>0)<e0 iff  limSe=— a.c
in which case 21 e q.¢

(i) 35+ PsmO=w= 3 LA iff
—oo= }ti_’rg inf S§,< ,1,‘_{2 sup S,=00 ae.

e ge.

[o.2]
in which case 21 e~ M=c0= 1
&=

g

Proof. The 'iff’ parts follow from fluctuation theory (2, Chapter 8),

and ’if LLrgoSn=~w a.e, then nz=:] 'e S"Loo g,e.’ part proved by stone(1969).

A complete characterization of the limit behavior {X,} of can now be given in terms of

the random environment {e,} by combining Lemma 2 and 3.

Main theorem. Let {a@,} be a sequence of iid nondegenerate random variables with
0<a,<1 or 0<ea,<1 for all n.

() If Z = Plo,> D<o, then limX,=oo a.e.

(i) If Z;%{P(p”<l)<°°' then MX,F—OO a.e.

(5i2) b‘zl—}iP(pn<i)=0°= 21-%;P(p,,>1), then {X,} is resurrent ;

in fact —oo= lim inf X,< lim sup X.= a.e.
n—o00 n—co

Proof. If E (1n o) is defined, then (i), (ii), (iii) correspond respectively to

(i") E(1n 0)<0
(ii") E(ln 0)>0
(iii’) E(ln 0)=0

Notice that the two series in (i) and (ii) cannot both converge simultaneously since

il—;(pn= 1)< (2, chapter 8).

n=
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First suppose 0< a, <1 for all n. We prove (i). So, suppose

"Zl’,%P(lndl'*' e +ln0‘,,)0)=’z\—3’1—}’(p”>1)<oo
Then Lemma 3 implies

nglp,,= ;e"@o a.e. where S,,=lngl+ -+« +Ing,

Now p,,= p_, in distribution. Thus ”ZJ’J— =00 ae.

Hence Lemma 2 implies that for a.e. fixed environment }j_{gX,,= o ae,

Now randomizing the environment gives

™ [im X, =o0) =]
$7—r00

f a,=1, (a,=0), with positive probability, but 2,20, (a,{1), for all n, then it is clear that
case (i), (case ii), holds.

Suppose that E (Ino) is defined. Set S,=Inoy+ + - + +Inog,

Then E (Ino)<0 iff 3&125,,=~00 ae. iff

2—};1’(0,,>1)= 2;1;1’(500)@0

by Lemma 3. Thus (i") corresponds to (i), Sirnijarly (11") and (ii’) correspond
respectively to (1i) and (iii).
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