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M-Estimation Functions Induced
From Minimum L, Distance Estimation'

Ro Jin Pak!

ABSTRACT

The minimum distance estimation based on the Ly distance between a
model density and a density estimator is studied from M-estimation point
of view. We will show that how a model density and a density estimator
are incorporated in order to create an M-estimation function. This method
enables us to create an M-estimating function reflecting the natures of both
an assumed model density and a given set of data. Some new types of
M-estimation functions for estimating a location and scale parameters are
introduced.
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1. INTRODUCTION

Least squares estimation is the most widely used estimation method in many
areas. However, the estimator by this method is very sensitive to extra-ordinary
observations. This drawback is due to the fact that the least squares method
deals with the square of the original quantity. Another reason is that least squares
method does not include any probabilistic structure on which data depend for
instance, whether it is skewed or not. In order to cure such problems, some robust
estimation techniques have been developed, and one of which is the minimum
distance estimation so-called. Minimum distance (MD) estimators are obtained
by minimizing a distance, or a metric, between a probabilistic structure induced
from data and an assumed probabilistic model. (For a complete list of various
minimum distance estimation methods, see Donoho and Liu (1988).) Among the
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many types of minimum distance estimation methods, we are interested in those
based on two distances:

Cramér von Mises : u(F,G) = /(F(m) ~ G(z))%dG

Hellinger = u(p,9) = [ (Vp(@) - Va(@)Pdz,

where F is an empirical distribution function, G is a distribution function, g is
a density function, and p is a density estimator. According to Donoho and Liu’s
concept of ‘Automatic’ robustness (1988), the estimators based on both distances
are robust. The estimator based on the Hellinger distance is asymptotically
efficient (Beran, 1977), and the estimator by the Cramér von Mises distance
is consistent but not fully efficient (Par and Schucany, 1980). The minimum
Hellinger distance estimators certainly have desirable properties, but it is not
easy to deal with the square root terms in the Hellinger distance. On the other
hand, an empirical distribution function in the Cramér von Mises distance is
rather too primitive to handle data unlike a kernel density estimator. Consider
the distance

ulp,g) = / (p(z) - g(2))%dz, (L1)

which is a hybrid of the Cramér von Mises and Hellinger distances, and call it Lo
distance. We will consider an MD estimator as an statistical quantity minimizing
L, distance, and call it the minimum Ly distance estimator (ML2D estimator). In
this article, we want to claim that the ML2D estimation method provides us with
simple and robust estimators. Robustness and asymptotic properties of ML2D
estimators will be investigated from the M-estimator’s point of view. Though
the ML2D estimator are robust, they lose a little bit of efficiency, just as usual
M-estimators do. However, we will show that loss in efficiency can be minimized
by adjusting the degree of smoothness of kernel density functions.

2. ML2D ESTIMATION AS M-ESTIMATION

2.1. Derivation of M-estimation function for a location parameter

Let gy be a family of probability densities indexed by 6. Based on the distance
given in (1.1), an ML2D estimator § is defined by a statistical quantity minimizing
ML2D, which is a solution to

Voulp, 96) = Vo / (p(z) — go(z))?dz = 0, (2.1)
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where we assume p(z), gg(z) € Ly and Vy represent a derivative with respect to
6. The equation (2.1) can be written as

/ (5(z) — go(2))Vago(z)dz = 0. (2.2)

Since we have [ gg(z)Vogp(z)dz = (1/2)V [gi(z)dz = 0, if 0 is a location
parameter, the equation (2.2) becomes

/ p(2)Vogs(z)dz = Vg / p(2)go()dz = 0. (2.3)

Given a random sample, X1, Xo,--- , X,,, having a density of gs(z), let p(z) be a
density estimator for gg(z), such as

pio) = 2302 (252,

i=1

where K () is a kernel and h is the window width (Silverman, 1986). The equation
(2.3) can be written as

n
1 - X;
Zv(,/ “K (‘” ) go(z)dz = 0. (2.4)
— h h
If we follow Huber (1981), and if we denote T3, as an estimate of §, we have

- X;
(X5 Tn) = V()/%K (a: - )gg(m)da;

(2.5)

=Ty

Example 2.1: Let X, -+, X, be independent and identically distributed with
a normal density, N(0,02), where o2 is known. A kernel is K(¢) = (1/v/2nx)
exp {—t?/2}, where h is a window width. We have

vo [ 1K (“” ‘hX") go(w)d
e

YA S— £ U

After dropping unnecessary constants, we have

(z: — 6)° }

W(X; —Tp) = (z; — 0) eXp{—Z(_hZ——}-U—Q)

0=Tn
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In Table 2.1, we list ¥-functions according to each kernel function used in
estimating p when the model is N(u,0?). Most of the 1-functions are similar to
the well-known 4-functions, but the ¢-functions corresponding to Biweight and
Gaussian kernels are new types. These 9-functions in Table 2.1 can be general-
ized, for example, by replacing h% + o2 in the 9-function for Gaussian kernel by
72, such as sexp {—s%/r?}. In a similar manner, t-functions for Biweight kernel
can be generalized as ¥(s) = r?s + 5% or —r2s + s for |s| < 7.

2.2. Robustness and Asymptotic Variance

Suppose we are interested in estimating a location parameter of gg(z) = g(z —
0). Writing Z; = (X; — 0)/h, the integral in (2.4) can be expanded as follows
when h — oo:

/%K (x _hXi)g(m—G)dcc
- /1K<x;9—~XiT_9—)g(m—0)d:c

h
/%K (u — Z;) hg(hu)du

_ / LK (2 — w)hg(hw)du = / K (u ~ Z3)hg(hns)du

= / [K(Zi) - uK'(Z;) + “2—2K”(Zz-) +] g(hu)du

_ Yy Loy [ 1
= ZK(Z)+ 5K (Zz)/v g(w)dv + O <h5),

if g(v) and K(t) are symmetric about 0. Therefore, we have

1 X, -0 1 X, -0 1
=T, = =VoK | 2 |+ — VK" [ = 2 —
$(Xi=Tn) = Vo ( - )+2h3v9 ( - )/v g(v)dv+0 <h5>
In terms of the definition of the influence function

_ (X —6y)
v Er[(X —6y)]

G=T,

IFy

we can claim that the shape of an influence function of an ML2D estimator is
determined by the shape of the kernel function, and the sup-norm of an influence
function, called “gross-error sensitivity”, is somehow determined by the moments
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of the model density. If the derivatives of a kernel function are bounded and a
model density has finite moments, a 1¢-function induced from ML2D estimation is
the so-called B-robust at F' (Hampel, et al., 1986), or just robust. Robustness of
an ML2D estimator can be interpreted in terms of robustness of an M-estimator,
and certainly helps us to understand the characteristics of an ML2D estimator.

Since we have realized that the ML2D estimator can be considered as an usual
M-estimator, they have the same asymptotic properties as the M-estimator. For
example, suppose we have

5 = sexp {55

which is the M-estimating function when a model is the normal density and a
kernel is Gaussian. The asymptotic variance turns out

2 2 2y 3 2 2\ 3/2
Vi, ®) = [*dF _(20°+h o +h 52
w (f P'dF)? 02 4+ h? 302 + h? ’

where h is a window width. The asymptotic variance is controlled by the value of

h, the smoothness of a kernel. It is always slightly greater than o2 and converges
to o2 as h increases Of course, when we are trying to estimate u if a model is
the normal with mean p and variance o2, the least possible value of the asymp-

totic variance becomes o2

. The larger values of h for a density estimator are
practically meaningless, so that the M-estimator based on that 1 (s) is not fully

asymptotically efficient.

2.3. Additional Comments

In section 2.1, we assume [ gg(z)Vggg(z)dz = 0, which is true for a location
case, but that equality does not always hold for any parameter §. Thus, instead
of (2.5) we should have

9 (X:0) = Vo [ 1K (”” ‘hX’) wi)iz—Vo [ Gloy. (29

However, the very last term in (2.6) will be adjusted in order for 4 to satisfy the
condition, as [ ¥(z)dG(z) = 0if G(z) is a model distribution function. Therefore,
without loss of generality, we can let

Y(Xi; 0) = Vo/lK (x — Xi) ge(z)dz.

h h
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Example 2.2: Estimating 0 when the model is N (i, 0?) and the kernel is Gaus-
sian. We first have

%[5 (255 0 (2) o= et (14 )

(X; — w)?
v { s |
After dropping unnecessary terms and adjusting 1 in order to make [ 4(z)dG(z) =
0, redefine 1 as

: )2 RV 2, ,2\3/2
% Xi =(-1+ (X_Z__“)_ exp _M + hi
T(n) h? + o2 2(h? + 02) h? 4202
In Table 2.2, we list x-functions according to kernels when the model is
N(u,0), where p is known. Of course, these functions should be adjusted to

o=T,

satisfy the condition that the expectation of each function should be zero. Most
of them in Table 2.2 are newly proposed M-estimation functions for scale param-
eters.
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