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Computing Fractional Bayes Factor Using the
Generalized Savage-Dickey Density Ratio!

Younshik Chung and Sangjeen Lee!

ABSTRACT

A computing method of fractional Bayes factor (FBF) for a point null
hypothesis is explained. We propose alternative form of FBF that is the
product of density ratio and a quantity using the generalized Savage-Dickey
density ratio method. When it is difficult to compute the alternative form
of FBF analytically, each term of the proposed form can be estimated by
MCMC method. Finally, two examples are given.
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1. INTRODUCTION

The Bayesian approach to testing hypothesis was developed by Jeffreys (1961)
as a major part of his program for scientific inference. Mainly Bayes factor has
been used for the Bayesian approach of model selection or hypothesis testing.
But it has a drawback, that is, it is hard to approach with improper prior.

Consider a statistical model with data Y and its parameter vector 6. Suppose
that we wish to test the null hypothesis Hy versus alternative H;, according to
a probability density fo(Y|6o) or f1(Y|61) respectively. Given priori probabili-
ties p(Hp) and p(H;) = 1 — p(Hy), the data Y produces posterior probabilities
p(Ho|Y) and p(H1|Y). The Bayes factor, B(Y), in favor of Hp is

_ p(Ho|Y)/p(Hi[Y)  me(Y)
B ==y o) - m¥)’ 1)

where m;(Y) = [ m(6;)fi(Y|60;)d6; is the marginal density of Y under model
H; and m;(6;) is the prior density of 6; under H;, for i = 0,1. Bayes factors

tThe research was supported (in part) by the Matching Fund Programs of Research Institute
for Basic Sciences, Pusan National University, Korea, 1998.
!Department of Statistics, Pusan National University, Pusan, 609-735 Korea.



386 Younshik Chung and Sangjeen Lee

typically depend rather strongly on the prior distributions much more so than
in estimations. For instance, as the sample size grows, the influence of the prior
distribution disappears in estimation, but does not in hypothesis testing or model
selction. Especially, when improper priors are used, it is difficult to compare
hypothesis or models by Bayes factor.

An improper prior for 6; is usually written as m;(6;) o« g¢;(6;), where g; is a
integrable function over 6;-space, for example, a location noninformative prior is
given by m;(6;) oc 1. That is, it could be expressed that

7('1(01) = Cigi(gi), 1= 07 L.

If there is no normalizing constant, we can treat c¢; as an unspecified constant.
However, Bayes factor in favor of Hy, with respect to these priors,

J 90(66) fo(Y|60)dbyg
[ a1(61)f1(Y101)d6,’

depends on the ratio cgo/ci. Recently, to overcome this problem, various ap-
proaches have been advocated. Aitkin (1991) proposed the posterior Bayes factor

B(Y) = 60/01

which is used proper posterior distribution instead of improper prior distribution.
In this approach, data are doubly used. As an alternative, the concept of the
partial Bayes factor is thought. Berger and Pericchi (1996) provided intrinsic
Bayes factor with the (imaginary) training sample idea of Smith and Spiegelhal-
ter (1980) and Spiegelhalter and Smith (1982). Fractional Bayes factor (FBF)
method is proposed by O’Hagan (1995). The FBF in favor of Hy,

q0 (7" Y)

B, (Y) = i Y) (1.2)

_ Jmi(6:) £ (Y|6:)db;
Jmi(0:) F7 (Y16:)df;
and for the choice of r, refer to O’Hagan (1995). In particular, the possible

is simple and has practical merits, where for < = 0,1, ¢;(r,Y)

choices of r are m/n, n~!logn or n~% where n and m are the original sample
size and minimal training sample size which is defined in Berger an Pericchi
(1996), respectively.

In section 2, we review Verdinelli and Wasserman’s (1995) method for com-
puting Bayes factor using the generalized Savage - Dickey density ratio method.
Then we suggest a computing method for the fractional Bayes factor (FBF) to
test a point null hypothesis. In section 3, the suggested computing method will
be applied to variance ratio, ¢, of random effects model and the mean parameter
of truncated normal distribution involving censored data.
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2. COMPUTING FRACTIONAL BAYES FACTOR

Consider a parameter § = (w,£) € © = Q x Z and suppose that we wish to
test the null hypothesis Hy : w = wqg versus alternative Hy : w # wy. Suppose
that my(¢) is the prior density for £ under Hy and 7;(w, £) is the prior density for
(w, &) under Hy. Let r be the approximation coefficient of fractional Bayes factor
explained in the equation (1.2). The FBF, B,(Y), in favor of Hy is expressed as

q0(ra Y)

q1 (7‘7 Y)
S mo(€) (¥ |wo,€)d€
JENG) f’(Ylwo,f)dﬁ

J [ (w8 f(Y|wg)dwdg
ffm(w,f fr(Y|w,€)dwdg

B, (Y) =

(2.1)

Then we can consider f7(Y|wo, ) and f7(Y|w, &) as the sampling distribution
densities, by normalizing them. That is, if let 1/co(r,&) = [ f7(Y|wo,&) dY
and 1/ci(r,w, &) = [ fT(Y|w,&)dY, then co(r,€) x fT(Y|wo, &) and ¢ (r,w,§)
X fT(Y|w,&) are densities for Y given (wp, ) and (w, &), respectively. Thus the
equation (2.1) can be written

B,(Y) = S (&) f(Ywo, §)d€ ffﬂl w, )7 (Y |w, §)dwd
' J T &) f(Yw,Odwde [ mo(€)f7(¥wo, €)dE

mO(Y) ) ml,r(Y)

mi(Y) mo,(Y)

= BFn(Y)- BFp(Y), (2.2)
where mo,(Y) = [ 70(6)f"(Y|wo,E)de, mi,(Y) = [ [ m(w,)f(Y|w,E)dwd,
BFy(Y) = EYg and BF[,(Y) = 2=l

Then mOJ(Y) and m; (YY) are not the marginal densities since there are
no normalizing constant terms of f"(Y|wg,&) and f7(Y|w,&), respectively. But
mp,(Y) can be regarded as the marginal density of Y with the sampling density
co(r, &) x fT(Y|wo, &) and prior %——&L Also, my,(Y) will be considered by the
same way. Thus, the FBF in (2.2) seems to be the product of two Bayes factors.
Therefore, we can compute the FBF in (2.2) by computing each Bayes factor and
then producting them. Dickey (1971) showed that if m;(¢|w) = mo(£), then Bayes
factor is 71 (wo|Y)/m (wg), where 7 (w|Y) and 7 (w) are the marginal posterior
density and the marginal prior density under Hj, respectively. Dickey (1971)
attributed this formula to Savage and called the expression Savage’s density ratio.
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If Dickey’s condition is not satisfied, we can apply to Verdinelli and Wasser-
man’s approach, which is called the generalized Savage-Dickey density ratio metho

d.

Lemma 2.1 (Verdinelli and Wasserman, 1995) Assume that 0 < m1{wo|Y),
m1{wo,&) < oo for almost all &, then

m(wolY) o m(6) . _ e _mo(€)
o) oGy o) B Ny

assuming that the expectation is finite with respect to m (€|wo, Y).

BFyu (Y) =

Proof: see Verdinelli and Wasserman (1995). O

For the notational convenience, we will represent various notations as follows;

_ fT(Y]w,f) _ 7r1(w,£)fr(Y|w,§)
mr (€YD = Ml ) R = T (w0, )17 (Yo, € dde

1 (wo] Y) = / T (wo, §[Y)dE, and (o, Y) = —W;’f,ffi;fg)‘

Note that 7y ,(w,£[Y) can be regarded as posterior density of w and ¢ given
Y, because mi(w, &) f"(Y|w, &) can be expressed as %E-ﬁ“;—% e (rw, &) F(Y]|w, €)
which are the product of prior and likelihood where ¢, (r, w, £) is defined as before.
But, in practice the computation of ¢;(r,w,€) is not needed.

By applying Lemma 2.1 to the FBF in (2.2), we have the following theorem.

Theorem 2.1. Assume that the following densities and ezpectations are finite.
The fractional Bayes factor in (2.1) is

E7T1 (Elwo,Y)[ 770(6) ]

m1(wolY) T1(Efwo)
B.(Y) = - . 2.
(Y) 71 (wolY) E?rl.r(ﬁlwo,Y)[_W_O(_f)__] (2.3)
' 71 (€|wo)

Proof: By Lemma 2.1, we can write that

71 (wo|Y) mo(£)
71 (wo) B 71 (€Jwo)

BFu(Y) =
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and
r _ omor(Y) [ wo(€)fT(Ywy, €)dE
1/BF10(Y) - ml,r(Y) - ml,r(Y)
7o (&) f7(Y]wo, §)
m1 (YY) (wo]Y)

Since WI,T(MOIY) - 71’1’1-(0.)(),le)/Wl’r(é"CUo,Y),
T _ . ’ﬂ'()({)fr(Ylwo,6)7‘(1,7.(5'&)0,6)
VBFL(Y) = m(wlY) / M (YY), (wo, €[Y) “
= 7r1r(wolY)-/WO(é)”l”(gle’Y)dg

71 (wo, &)

df . WI,T(WOIY)-

T (oY) r (elwo,Y)
— E [0 (€)/m1(€]wo)]-
Therefore, it follows from (2.2) that

B.(Y) = BFu(Y) - BF[(Y)
mi(wolY) B0 [my(£) /1 (€lwo)]
71, (wo|Y) E”lvr(ﬂ“’o’y)[WO(f)/WI(f’wo)].

O

Remark 2.1: For a special case, if m;(€|wg) = mp(€), then the equation (2.3) is
simplified to

71 (wo]Y)

B = )

(2.4)
If it is not easy to compute B,(Y) in (2.3) analytically, we can use the Gibbs
sampler (Gelfand and Smith, 1990) which is recently powerful method to over-
come the difficulty of Bayesian computation. Let {(wr1,&1),...,(wre,&rq)} is
a samples from the posterior m »(w,&|Y) by MCMC method. First we consider
the computations of m;(wg|Y) and 7 ,(w|Y). Since the numerical estimations
of m1(wo|Y) and 7y, (w|Y) are similar and if r = 1 7 (w]Y) = m1{wo|Y), only
the case for my,(wo|Y) will be presented. If 7y ,(w|{,Y) is in the closed form,
then the marginal posterior density for w evaluated at wp is estimated using
Rao-Blackwellizing estimator of Gelfand and Smith (1990) as follow;

G

. 1

1,0 (wo|Y) = el E 1 (wolY, &rs).
1=1
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If 7 r(w]€, Y) is not in the closed form, we use the another method due to Chen
(1994) as follows;

G

fur(@lY) = 2 Y alwnlér)

=1

9(wo, &4|Y)
g(wiragri'Y),

where g(w,£]Y) = fT(Y|w, €)1 (w,&) and ¢(w, &) is an arbitrary probability den-
sity function and so q(w|¢) is its conditional density . Chen (1994) proposed that
in some cases a reasonable choice for q is to use a normal density whose mean and
covariance are based on the sample mean and sample covariance of {(w;1,&1),

(wr27§1'2)a ceey (w‘l‘Ga 5T'G)}'
Next, in order to estimate C, = E’””(ﬂ‘*’o’Y)—ﬂ(og)— we draw a sample {551),

71 (wo,€)?

y fﬁG)} from my ,(&|wo, Y). Then, we estimate C, by

Gl & moE?)

r TN T -
G = m(wo, &)
Also, similarly we can estimate C| = E"l(fl“’o’y)%. Therefore, we could

have the estimate for B,(Y), B.(Y) = %)7 . %

3. SOME APPLICATIONS

In this section, we consider the two examples which use the forms of FBF in
(2.3) and (2.4)

3.1. Random effects model

Consider a one-way balanced random effect model:
yij=p+e+e;, fori=1,..., T and j=1,...,J (3.1)

where p is the mean of y;;, and e; and ¢;; are independent normal variables with 0
means and variances o2 and o2, respectively. Let ¢ = J —Z—%, which is the variance
ratio, of interest in various fields. For notational convenience, let 6 = (¢, p,0?)
and Y = (yi5)rxJ-

We are interested in the ratio of variances, ¢, of model (3.1). This pararameter
in the random effect model has been of interest for a long time in various fields.
We want to test the hypothesis Hy : ¢ = ¢ versus H; : ¢ # ¢o with proposed
method.
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For model (3.1), the likelihood function of parameter § = (¢, 11, 0%) is given
by

- - 1,82+ 1J(y. — u)?
L(¢n,0%) o o™ (14 ¢)™1/ exp{— 55 (1 1n(Ly¢ .

where y;. Z yzj/J, Y., = Zizjyij/IJ, §2 = IY (i —y.)? and 8% =
Z Z Yij = Yi.)

Theorem 3.1. In the random effects model (3.1), Jeffreys’ priors are assumed
in both hypotheses. Then, the FBF in favor of Hy is

+53)}

ﬁprer(T{—VW) (1 + ¢0
Boaliw) = W

where p = 1/2, ¢ = I(J = 1)/2, py = r1/2, ¢, = rI(J — 1)/2, and W = S}/52,
and f; ;(z) = [ Y1 —t)I"1dt is the incomplete beta function of (i, ) evaluated
at T.

BT(Y) =

)q—lIr (1 +

}%ﬁﬂ)ﬂr—p-i-%—q, (32)

Proof: Recall that Jeffreys’ priors for Hy and H; are mo(u,0%) = o2 and
T (b, 1,0%) = 073(1 + $)73/2, respectively. This situation is the special case of
our computing method and we can use the FBF in (2.4). Thus we want to find
the marginal posterior density for ¢. Since the joint posterior density under H,
is

(6,1, 0%17, 8%, 85) o o TUIIE (1 4 g (T2

r ST+ 1y, —p)? |
exp{—é_oz( 1+¢ +52)}a
the marginal posterior density for ¢ is
7T177-(¢}Y) = //WI,T(¢7M7U2lg7 Sg,Sg)dﬂ,dO’z
. / —(r1J+3) (1+¢) (rI+3)/ exp{ (52+ 1‘il¢)}
2r o /2,4 2
{5501+ )} %do
. (1 + ¢)——(7‘I+2)/2/(0_2)—(rIJ+2)/2 exp{ %(b)}doj

w
1 (’I‘I+2/2 1 T‘IJ/2
(L4 )T o)
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To find its normalizing constant, we have to get the value of integral,
%4
) rIJ/2d¢ (33)

oo (r1+2)/2(1
[ e eerna g 2

To do this, let Z = W/(W + 1 + ¢). Then the integral (3.3) can be obtained as
follows;

w
W w w
_ —(r1+2)/24r1J/2 ~rIJ/2

W
_ W—TI/Q'/W"' Zr1/2- 1 _Z)rI(J—l)/2——le
0

w

= W P

).
Hence,

1 (14 ¢)r!
r(@Y) =
T (1Y) ﬂpr,qr(Ww;/ﬁ) war

1+¢
w

(1+ )P (3.4)
And 7 (4|Y) is the special case of m1,(¢|Y) with » = 1. Since B,(Y) =
m1-(P0|Y)/m1(¢0]Y), the proof is complete. O

Now, we apply this approach to a real data, Box and Tiao (1973)’s Dyestuff
data, which is set out in Table 3.1. The object of the experiment was to learn to
what extent batch to batch variation in a certain raw material was responsible
for variation in the final product yield with Jeffreys prior. Five samples from
each of six randomly chosen batches of raw material were taken. From data, S?
= 56,357.5, 52 =58,830.0 and W = 0.95797. So, M S} = S%/v; = 11,271.50 and
MS? = 52/1/2 = 2,451.25 where v; = 5 and vy = 24 are between and within
batch degrees of freedom, respectively. Hence, 62 = MS7 = 2451.25 and 62
= (MS? — MS3)/vi = 1764.05 and so ¢ = J% = 3.6 which is the maximum
likelihood estimator and near its posterior mode. r = Nt =1 /V/30 is used for
the approximation coefficient of FBF. The value of FBF for testing the hypothesis
Hpy : ¢ = 3.6 is 2.2805. Therefore, we can say that this non-Bayesian estimator
for ¢ is decided as a good estimator in Bayesian viewpoint.
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Table 3.1: Dyestuff Data

Batch 1 2 3 4 5 6
Observations | 1545 | 1540 | 1595 | 1445 | 1595 | 1520
1440 | 1555 | 1550 | 1440 | 1630 | 1455
1440 | 1490 | 1605 | 1595 | 1515 | 1450
1520 | 1560 | 1510 | 1465 | 1635 | 1480
1580 | 1495 | 1560 | 1545 | 1625 | 1445

3.2. The truncated normal data involving censored data

Assume that z;,...,2z, be a random sample from normal distribution with
mean u and variance ¢? and each zj bein A; for j = 1,--- ,n. Let the full
data index set I = {1,... ,n} be divided to the uncensored data index set I, =
{i1,... ,in, } and the censored data index set I, = {71y s Jn.}, that is, n = n, +
ne. Suppose that z;, € 4;,,... s Ti,, € A, areonly observed for iy, ... ying, € Iy,
and z;, € Aj,,...,T;, € Aj, arecensored for j1,... 4, € I.. We want to test
the hypothesis Hy : 11 = o where p19 is a known value. In this situation, following
on Jeffreys (1961), we take (o) o< 07! under Hy and 71 (i, 0) = (o) m (o)

where 71 (ujo) = N(uo,0?) and m(0) = m(o) under H;. The true values of

censored data z;,,... ,x;, are treated as parameters. So, the marginal posterior
density 71 (p|z1,- -+ ,2n) can be estimated using the method of Gelfand and Smith
(1990).

To overcome the unknown constant problem from improper priors, we use
the FBF in section 2. Especially, the form of FBF in (2.3) is needed because
m(o|po) # mo(o). At first, for the case f(zy,--- , Tn|, o) we draw

nT + o o?

L1, 5 Tn, ~ N TR s
Hlza m @ ( n+1 n+1)
s;/?
O"iL'l,"' 1 Tpy b~
Xn+1

and
mjl”ra ~ NA]' (/1‘70'2)7 Jel

where 81 = (n—1)s?+n(F—pu)?+(u—po)?, s2 = >i(zi—5)/(n—-1),% = >izi/n
Np(p,0?) is a normal truncated to the set B, and I, is defined as before.
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Next, for the case f(zy1, - , 2|y, o) we draw

™I+ py 02

m+1 "rn+1
1/2
T

/lela"' yTny 0~ N(

);

O-I:Eh K2 XY -
Xrn+1

and

-’Ejlll.,O' ~ NAj(MaU2/T)a J€l,

where S; = r(n ~ 1)s? + rn(Z — p)? + (1 — po)?.
After these Gibbs sampling processes are performed N times iteratively, we

have two samples, {M(g), g(g),mg.‘ll)’ o gn) g=1,...,N}and {MT(g), o™9) xgl(g),
T(g) ,g=1,..., N}. Let 29 and z"(9) be the means of full data includ-

ing g-th generated values for censored data {még) ,j € I.} and {xg(g) .7 € I},
respectively. From these samples, we estimate that

7AT1(,L1,0,$1 €A, Iy GA

ni() 52
NZ Tt T )

n+1 " n41i
and

rn+1 " rn+1

7Arl,r(NOkL'l €A1,"‘ Tn EA NZ )(/1'0)

where the notation N(a,b)(c) means the normal density value at ¢ with parame-
ters of mean @ and variance b.

Now, to compute both of expectation terms of (2.3) we need two samples
{611, ,61,n} and {671, - ,0, N} from mi(o|po,z1 € A1, -+ ,z, € Ap) and
m1r(olpo, 21 € Ar,--- ,zn € Ay), respectively. By proceeding as before with
fixed at po, we can get them. Since mo(o)/m (1o, o) = 1/7(uolo) = V2mo, C) =
V2rE (0|po, X1 € A1, , Xn € Ay) and Cr = V27 E,(0]po, X1 € A1, -+, Xp €
Ap), where Ei(-) and E,(-) are the expectations with respect to the distributions
71(olpe, 1, -+ ,x,) and my . (0|po, 21, -+ , ), respectively.

Hence, they are estimated by

\/_Zalg/N and C, = rZaTg/N

g9=1 g=1
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Therefore, we estimate By(X1, - ,Xn) as
. #1(wolzy € A1, yzn € A)  C
Byxa, o yxa) = ST € AL I € An) G (35)

Tye(piolzy € Ay, 20 € 4n) G,

We work numerically with data from an experiment described by Sampford
and Taylor (1959) involving 17 pairs of rats that were litter-mates. One of
cach pair was injected with vitamin Big; the other was a control. The differ-
ences between the log;, survival times in minites are < —.25,—.18, —.83, —.57,
.49, —.12,—.11, —.05, —.04, —.03,—.11,.14,.30,.33, .43, .45 and > .30. The first
and the last observations are censored. We are interested in testing whether
@ = po = 0. Since Berger and Pericchi (1996)’s minimal training sample size is
1, we choose r = 1/17. To certify the convergence of each drawn sample, we
use the checking method proposed by Gelman and Rubin (1992). The value of
FBF in (3.5) for favoring Hy : p = po = 0 is computed as 1.4945. Therefore, we
can conclude that the injection of vitamin Bjs is not effective, since the mean of
differences is decided as zero.
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